Design of floors for vibration quiz

From SteelConstruction.info
Revision as of 12:11, 12 March 2019 by Chris.dolling@steelconstruction.org (talk | contribs) (Created page with "Please answer the following 10 multiple choice questions, then click 'submit' to check the result. The pass mark for a CPD certificate is 8 out of 10, and you may retake the quiz...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Please answer the following 10 multiple choice questions, then click 'submit' to check the result. The pass mark for a CPD certificate is 8 out of 10, and you may retake the quiz as many times as you wish, but the questions will vary! Please note that one, two, three or all of the possible answers presented for each question may be right, and to gain a mark for that question all correct answers must be identified.

Good luck

Design of floors for vibration

Which of the statements below are true with respect to the Variable Dose Value (VDV) method?

VDV’s can be used for hospital operating theatres
They relate the response factor or multiplying factor to the intermittency of vibration
VDV’s are independent of walking path length
Give the number of times that an activity can take place in a given exposure period

Human perception to vibration depends on the direction of incidence of the acceleration relative to the human body. In the basicentric coordinate system, the z-axis corresponds to the direction of the human spine. In which of the situations below is the human body more sensitive to vibration?

Walking (z-axis perpendicular to the floor)
Lying down (z-axis parallel to the floor)
Sitting
Standing

What is a reasonable frequency range caused by walking?

2 Hz to 3 Hz
1 Hz to 2 Hz
2.8 Hz to 3.2 Hz
1.8 Hz to 2.2 Hz

When assessing the frequency of a floor, which elements of the floor must the designer check?

The slab
The secondary beam
The primary beam
All of the above, both individually and collectively

A designer has conservatively assessed a floor plate for an office of 18m x 30m. The structural grid is 9m x 7.5m and the plans show a central corridor running the length of the building. The target response factor is 8, but initial calculations indicate a response factor of 9. Which of the following strategies could the designer use to potentially reduce the initial response factor calculated?

The source of excitation (the corridor) is close to the column line, and so a µe value less than 1 is possible
Replace normal weight concrete for the composite slab with lightweight concrete
Reduce the walking path and resonance build-up by introducing doors in the corridor
If the axis of vibration is known use the appropriate frequency weighting curve

Why do we calculate the natural frequency of a floor system? (tick all that apply)

To avoid resonant behaviour of the floor plate
To ensure that any dynamic effects do not induce loads greater than the static loads for which the floor plate has been designed
To ensure that the system frequency is sufficiently greater than the forcing or walking pace frequency
To obtain a qualitative prediction of the serviceability performance of the floor plate

No floor structure, and no single element within that floor structure, should have a fundamental frequency less than what?

8.4hz
5hz
4hz
3hz

Which of the following statements are true?

The response factors or multiplying factors given in BS 6472 are “for a low probability of adverse comment”
Multiplying factors are for exposure to continuous vibration
Multiplying factors are for a 16 hour exposure period during the day
Multiplying factors are for an 8 hour exposure period during the night

Where is the magnitude of damping of most importance?

Floors with low frequency
Floors with low frequency
Resonant floors
Floors subject to group activities

Which of the following descriptions accurately describes primary beam mode?

The primary beams form nodal lines about which the secondary beams vibrate as simply supported members. The slab is assumed to be continuous over the secondary beams and so a fixed-ended boundary condition is used.
The primary beams vibrate about the columns as simply supported members, and the secondary beams and slab are taken to be simply supported
The primary beams vibrate about the columns as simply supported members, and the secondary beams and slab are taken to be fixed-ended
The primary beams vibrate about the columns as fixed-ended members, and the secondary beams and slab are taken to be simply supported