










# **Steel Building Design:** Worked Examples – Open Sections



SCI (The Steel Construction Institute) is the leading, independent provider of technical expertise and disseminator of best practice to the steel construction sector. We work in partnership with clients, members and industry peers to help build businesses and provide competitive advantage through the commercial application of our knowledge. We are committed to offering and promoting sustainable and environmentally responsible solutions

#### Our service spans the following five areas:

| Membership<br>Individual and corporate membership |
|---------------------------------------------------|
| Technical information                             |
| Courses                                           |
| Publications                                      |
| Online reference tools                            |
| <b>Education</b><br>Codes and standards           |

**Construction solutions** 

Sustainability Product development Research Engineering solutions

**Communications technology** Websites Communities

Design tools

#### Assessment

SCI assessed

The Steel Construction Institute, Silwood Park, Ascot, Berkshire, SL5 7QN. Telephone: +44 (0) 1344 636525 Fax: +44 (0) 1344 636570 Email: membership@steel-sci.com

For information on publications, telephone direct: +44 (0) 1344 636513 or Email: publications@steel-sci.com

For information on courses, telephone direct: +44 (0) 1344 636500 or Email: education@steel-sci.com

World Wide Web site: www.steel-sci.org 24 X 7 technical information: www.steelbiz.org

## Steel Building Design: Worked Examples - Open Sections

In accordance with Eurocodes and the UK National Annexes

M E Brettle BEng (Hons)

Published by: The Steel Construction Institute Silwood Park Ascot Berkshire SL5 7QN

Tel:01344 636525 Fax:01344 636570 © 2009The Steel Construction Institute

Apart from any fair dealing for the purposes of research or private study or criticism or review, as permitted under the Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the UK Copyright Licensing Agency, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organisation outside the UK.

Enquiries concerning reproduction outside the terms stated here should be sent to the publishers, The Steel Construction Institute, at the address given on the title page.

Although care has been taken to ensure, to the best of our knowledge, that all data and information contained herein are accurate to the extent that they relate to either matters of fact or accepted practice or matters of opinion at the time of publication, The Steel Construction Institute, the authors and the reviewers assume no responsibility for any errors in or misinterpretations of such data and/or information or any loss or damage arising from or related to their use.

Publications supplied to the Members of the Institute at a discount are not for resale by them.

Publication Number: SCI P364

ISBN 978-1-85942-183-3

British Library Cataloguing-in-Publication Data.

A catalogue record for this book is available from the British Library.

### FOREWORD

The design of steel framed buildings in the UK, has, since 1990, generally been in accordance with the British Standard BS 5950-1. However, that Standard is due to be withdrawn in March 2010; it will be replaced by the corresponding Parts of the Structural Eurocodes.

The Eurocodes are a set of structural design standards, developed by CEN (European Committee for Standardisation) over the last 30 years, to cover the design of all types of structures in steel, concrete, timber, masonry and aluminium. In the UK, they are published by BSI under the designations BS EN 1990 to BS EN 1999; each of these ten Eurocodes is published in several Parts and each Part is accompanied by a National Annex that implements the CEN document and adds certain UK-specific provisions.

This publication is one of a number of new design guides that are being produced by SCI to help designers become acquainted with the use of the Eurocodes for structural steel design. It provides a number of short examples, in the form of calculation sheets, illustrating the design of structural open section members and simple connections in buildings.

The examples were prepared by Miss M E Brettle (SCI) and Mr A L Smith (SCI). The examples were checked by Mr D G Brown (SCI) and Dr S J Hicks (formerly of SCI).

The work leading to this publication was funded by Tata Steel<sup>\*</sup> and their support is gratefully acknowledged.

<sup>\*</sup> This publication includes references to Corus, which is a former name of Tata Steel in Europe

iv

### Contents

| FOF | REWORD                                                                  | No.<br>iii |
|-----|-------------------------------------------------------------------------|------------|
| SUN | MMARY                                                                   | vi         |
| INT | RODUCTION                                                               | 1          |
| wo  | RKED EXAMPLES                                                           |            |
| 1.  | Choosing a steel sub-grade                                              | 3          |
| 2.  | Simply supported laterally restrained beam                              | 9          |
| 3.  | Unrestrained beam with end bending moments                              | 20         |
| 4.  | Simply supported beam with lateral restraint at load application points | 30         |
| 5.  | Unrestrained beam with end bending moments using a Class 3 section      | 41         |
| 6.  | Beam under combined bending and torsion - Simple method                 | 50         |
| 7.  | Continuous beam designed elastically                                    | 62         |
| 8.  | Simply supported composite beam                                         | 76         |
| 9.  | Pinned column using Class 3 section                                     | 96         |
| 10. | Pinned column with intermediate restraints                              | 103        |
| 11. | Biaxial bending and compression of a Class 1/2 section                  | 111        |
| 12. | Major axis bending and compression of a Class 3 section                 | 125        |
| 13. | Column in simple construction                                           | 139        |
| 14. | End plate beam to column flange connection                              | 150        |
| 15. | Fin plate beam to column flange connection                              | 159        |
| 16. | Column splice - Bearing                                                 | 170        |
| 17. | Column splice - Non bearing                                             | 181        |
| 18. | Column splice - Non bearing (Net tension)                               | 195        |
| 19. | Base plate - Nominally pinned                                           | 201        |
| 20. | Base plate - Column with moment                                         | 207        |
| REF | ERENCES                                                                 | 215        |

### SUMMARY

This publication presents 20 design examples to illustrate the use of Eurocodes 3 and 4 for the design of structural open section members and connections. The examples all use the Nationally Determined Parameter values recommended in the UK National Annexes.

A brief introductory section precedes the examples and a bibliography section is given at the end.

### INTRODUCTION

This publication presents twenty design examples to illustrate the use of Eurocodes 3 and 4 for the design of structural open section members and connections. The examples all use the Nationally Determined Parameter values recommended in the UK National Annexes.

While preparing the examples for this publication, the emphasis has been to illustrate the design process in accordance with the Eurocodes and not necessarily to reproduce practical situations. Other solutions may be equally acceptable to those given. No consideration has been given to the influence of factors related to erection and fabrication; the consideration of these factors and the standardisation of sizes may well lead to solutions with better overall economy than those given.

All the design examples assume the use of either S275 or S355 steel that complies with EN 10025-2.

In addition to the design of simple structural members, examples are included for simple connections used in buildings. Design guidance for simple connections will be given in SCI publication P358 *Joints in steel construction: Simple connection in accordance with* Eurocode 3(due to be published in 2010).

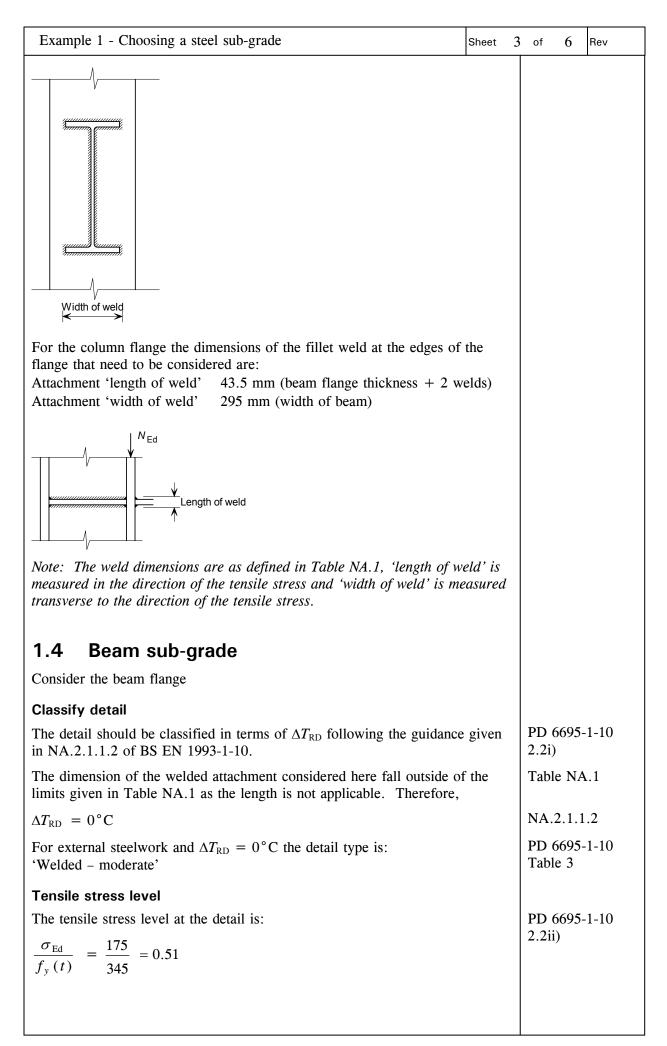
Where a reference is made to P363 or the "Blue Book" this refers to Steel building design: Design data. In accordance with the Eurocodes and the UK National Annexes.

In the examples, references are made to Eurocode Parts and to product standards. The Eurocode Parts and most of the product standards were prepared initially by CEN and all their internal references are made using the 'EN' designations. However, all these standards are published in the UK under a 'BS EN' designation; that designation has been used.

References to clauses introduced in the National Annex are distinguished by their NA prefix, for example, as NA.2.3.

Unless otherwise stated, the clause and table numbers given in the right-hand margin of the worked examples refer to the Eurocode Part specified at the start of each example.

Reference is made in some design examples to non-contradictory complementary information (NCCI). Such information might provide additional guidance to designers but care must be taken not to use any guidance that would conflict with the Eurocodes.


One instance where NCCI is needed is in determining the non-dimensional slenderness  $\overline{\lambda}_{LT}$  for lateral torsional buckling, which EN 1993-1-1 states may be derived from the elastic critical moment  $M_{cr}$ , although no method is given for determining the value of  $M_{cr}$ . Sources of NCCI for  $M_{cr}$  include:

- Formulae in text books
- Software, such as '*LTBeam*' (available from the CTICM website)

Alternatively, a conservative simplified method for determining  $\lambda_{LT}$  directly is given in SCI publication P362 *Steel building design: Concise Eurocodes*.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Job No.                                                                                                           | CDS164                                                                                                                                      |                                                                                      | Sheet                                                  | 1 of         | 6              | Rev                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------|--------------|----------------|-----------------------------------|
| SCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Job Title                                                                                                         | Worked exa                                                                                                                                  | •                                                                                    |                                                        |              |                | NA                                |
| Silwood Park, Ascot, Berks SL5 7QN                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Subject                                                                                                           | Example 1 -                                                                                                                                 | Choosing                                                                             | a steel sul                                            | o-grad       | e              |                                   |
| Telephone: (01344) 636525<br>Fax: (01344) 636570                                                                                                                                                                                                                                                                                                                                                                                                                                       | Client                                                                                                            |                                                                                                                                             | Made by                                                                              | MEB                                                    | Date         | Feb            | 2009                              |
| CALCULATION SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                   | SCI                                                                                                                                         | Checked by                                                                           |                                                        | Date         |                | 2009                              |
| 1 Choosing a ste                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | el su                                                                                                             | ıb-grade                                                                                                                                    |                                                                                      |                                                        | Refe<br>BS I | rence<br>EN 19 | s are to<br>93-1-10:<br>uding its |
| 1.1 Scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                   |                                                                                                                                             |                                                                                      |                                                        |              |                | Annex<br>herwise                  |
| An exposed steel structure is propos                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sed with:                                                                                                         |                                                                                                                                             |                                                                                      |                                                        | state        |                | ierwise                           |
| • S355 steel to BS EN 10025-2:20                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )04                                                                                                               |                                                                                                                                             |                                                                                      |                                                        |              |                |                                   |
| • the beams welded to the column                                                                                                                                                                                                                                                                                                                                                                                                                                                       | flange, a                                                                                                         | as shown in F                                                                                                                               | igure 1.1                                                                            |                                                        |              |                |                                   |
| • the elements are hot rolled see<br>(column flange) and 19.6 mm (b                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                   |                                                                                                                                             | t parts are                                                                          | 31.4 mm                                                |              |                |                                   |
| • the maximum tensile stress in th                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e beam f                                                                                                          | lange of 175                                                                                                                                | N/mm <sup>2</sup>                                                                    |                                                        |              |                |                                   |
| • there is no tensile stress in the c                                                                                                                                                                                                                                                                                                                                                                                                                                                  | olumn.                                                                                                            |                                                                                                                                             |                                                                                      |                                                        |              |                |                                   |
| Choose appropriate sub grades to av                                                                                                                                                                                                                                                                                                                                                                                                                                                    | void brittl                                                                                                       | le fracture.                                                                                                                                |                                                                                      |                                                        |              |                |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   | Ēd                                                                                                                                          |                                                                                      |                                                        |              |                |                                   |
| Figure 1.1<br>BS EN 1993-1-10 presents a table w<br>sub-grades with different stress leve<br>Six variables are used in the express<br>reference temperature that should be<br>presents a modified table for a single<br>reference temperature for actual strees.<br>The UK National Annex also refers<br>Information (NCCI) given in Publis<br>further guidance.<br>The procedure for determining the re<br>buildings is given in 2.2 of PD 6692<br>that document. That guidance is us | ls for a r<br>sion gives<br>e conside<br>e stress l<br>ess level.<br>to Non (<br>hed Docu<br>naximum<br>5-1-10, w | ange of reference<br>n to determined<br>red. The UK<br>evel, with an<br>Contradictory<br>iment PD 669<br>n thickness val-<br>vith reference | ence temper<br>e the require<br>National A<br>adjustment<br>Complimen<br>5-1-10:2009 | atures.<br>ed<br>nnex<br>to<br>tary<br>for<br>lwork in |              |                |                                   |

| Example 1 - Choosing a steel sub-grade                                                                                                                                                                                                                            | Sheet  | 2 | of                   | 6    | Rev      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|----------------------|------|----------|
| 1.2 Design combination and value of actions                                                                                                                                                                                                                       |        |   |                      |      | 1        |
| According to BS EN 1993-1-10 the design condition should consider the following combination of actions                                                                                                                                                            |        |   |                      |      |          |
| $A[T_{\rm Ed}] + \sum G_{\rm k} + \psi_1 Q_{\rm k1} + \psi_{2,i} Q_{\rm ki}$                                                                                                                                                                                      |        |   |                      | N 19 | 993-1-10 |
| in which $T_{\rm Ed}$ is the reference temperature. For buildings the value of $T_{\rm Ed}$ exposed steelwork is given by the UK National Annex to BS EN 1993-<br>-15°C.                                                                                          |        |   | (2.1)<br>BS E<br>NA. |      | 993-1-1  |
| For this example the values of stress in the column and the beam are th to $G_k$ and $Q_{k1}$ .                                                                                                                                                                   | ose du | e |                      |      |          |
| Beam $\sigma_{\rm Ed} = \pm 175 \ {\rm N/mm^2}$ in the flanges                                                                                                                                                                                                    |        |   |                      |      |          |
| Column $\sigma_{\rm Ed}$ is compressive in all parts of the column cross-section.                                                                                                                                                                                 |        |   |                      |      |          |
| 1.3 Joint details                                                                                                                                                                                                                                                 |        |   |                      |      |          |
| 1.3.1 Section properties                                                                                                                                                                                                                                          |        |   |                      |      |          |
| $457 \times 191 \times 98$ UKB                                                                                                                                                                                                                                    |        |   |                      |      |          |
| From section property tables:                                                                                                                                                                                                                                     |        |   |                      |      |          |
| Depth $h = 467.2 \text{ mm}$<br>Width $b = 192.8 \text{ mm}$                                                                                                                                                                                                      |        |   | P363                 |      |          |
| Web thickness $t_{\rm w} = 11.4$ mm                                                                                                                                                                                                                               |        |   |                      |      |          |
| Flange thickness $t_{\rm f} = 19.6 \text{ mm}$                                                                                                                                                                                                                    |        |   |                      |      |          |
| $305 \times 305 \times 198$ UKC                                                                                                                                                                                                                                   |        |   |                      |      |          |
| From section property tables:                                                                                                                                                                                                                                     |        |   |                      |      |          |
| Depth $h = 339.9 \text{ mm}$                                                                                                                                                                                                                                      |        |   | P363                 |      |          |
| Width $b = 314.5 \text{ mm}$                                                                                                                                                                                                                                      |        |   |                      |      |          |
| Web thickness $t_{\rm w} = 19.1 \text{ mm}$                                                                                                                                                                                                                       |        |   |                      |      |          |
| Flange thickness $t_{\rm f} = 31.4 \text{ mm}$                                                                                                                                                                                                                    |        |   |                      |      |          |
| For buildings that will be built in the UK, the nominal values of the yie strength $(f_y)$ and the ultimate strength $(f_u)$ for structural steel should be t obtained from the product standard. Where a range is given, the lowes nominal value should be used. | hose   |   | BS E<br>NA.2         |      | 993-1-1  |
| For S355 steel and 16 mm $< t \le 40$ mm                                                                                                                                                                                                                          |        |   | BS E                 | N 1( | 0025-2   |
| Yield strength $f_y = R_{eH} = 345 \text{ N/mm}^2$                                                                                                                                                                                                                |        | ' | Table                | e 7  |          |
| <b>1.3.2 Welds</b><br>Fillet weld leg length 12 mm                                                                                                                                                                                                                |        |   |                      |      |          |
| For the beam flange, the dimensions of the fillet weld to consider are:<br>Attachment 'length of weld' Not applicable<br>Attachment 'width of weld' 192.8 mm (width of beam)                                                                                      |        |   |                      |      |          |
|                                                                                                                                                                                                                                                                   |        |   |                      |      |          |
|                                                                                                                                                                                                                                                                   |        |   |                      |      |          |



| Example 1 - Choosing a steel sub-grade                                                                                                                                                                                                                             | Sheet 4   | of             | 6 | Rev  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|---|------|
| Initial column in table                                                                                                                                                                                                                                            |           |                |   |      |
| For a 'welded – moderate' detail and $\frac{\sigma_{\rm Ed}}{f_y(t)} = 0.51 > 0.5$                                                                                                                                                                                 |           | PD 60<br>Table |   | 1-10 |
| The initial column in the table is 'Comb 7'.                                                                                                                                                                                                                       |           |                |   |      |
| Adjustment to table column selection                                                                                                                                                                                                                               |           |                |   |      |
| Verify whether the initial table column selection needs to be altered for criteria given in Note A to Table 3.                                                                                                                                                     | the       |                |   |      |
| Charpy test temperature                                                                                                                                                                                                                                            |           |                |   |      |
| NA.2.1.1.4 of the UK National Annex to BS EN 1993-1-10 gives adjust to the reference temperature based on the difference between the Charp temperature and the minimum steel temperature. These adjustments has accounted for in the Tables given in PD 6695-1-10. | y test    |                |   |      |
| Gross stress concentration factor ( $\Delta T_{Rg}$ )                                                                                                                                                                                                              |           |                |   |      |
| There are no areas of gross stress concentration on the beam flange.<br>Therefore the criterion is met, thus                                                                                                                                                       |           |                |   |      |
| $\Delta T_{\rm Rg} = 0$                                                                                                                                                                                                                                            |           |                |   |      |
| Radiation loss ( $\Delta T_r$ )                                                                                                                                                                                                                                    |           |                |   |      |
| There is no radiation loss for the joint considered here. Therefore the is met, thus                                                                                                                                                                               | criterion |                |   |      |
| $\Delta T_{\rm r} = 0$                                                                                                                                                                                                                                             |           |                |   |      |
| Strain rate $(\Delta T_{\dot{\varepsilon}})$<br>Here the strain rate is not different to the reference strain rate given in 1993-1-5 ( $\dot{\varepsilon} = 4 \times 10^{-4}$ /sec). Therefore the criterion is met, thus $\Delta T_{\dot{\varepsilon}} = 0$       | BS EN     |                |   |      |
| Cold forming (AT )                                                                                                                                                                                                                                                 |           |                |   |      |
| Cold forming ( $\Delta T_{\varepsilon_{cf}}$ )<br>The sections considered here are hot rolled, therefore no cold forming present and the criterion is met, thus                                                                                                    | is        |                |   |      |
| $\Delta T_{\varepsilon_{\rm cf}} = 0$                                                                                                                                                                                                                              |           |                |   |      |
| As all four criteria are met the table column selection does not need to adjusted.                                                                                                                                                                                 | be        |                |   |      |
| For S355, 'welded – moderate' and $\frac{\sigma_{\rm Ed}}{f_y(t)} = 0.51$ , the limiting steel                                                                                                                                                                     |           | PD 60<br>Table |   | 1-10 |
| thicknesses are:                                                                                                                                                                                                                                                   |           |                |   |      |
| JR 12.5 mm                                                                                                                                                                                                                                                         |           |                |   |      |
| J0 37.5 mm<br>12.5 mm $\leq$ 19.5 mm $\leq$ 37.5 mm                                                                                                                                                                                                                |           |                |   |      |
| 12.5  mm < 19.5  mm < 37.5  mm                                                                                                                                                                                                                                     |           |                |   |      |
| Therefore, an appropriate steel grade for the UKB section is S355J0.                                                                                                                                                                                               |           |                |   |      |
|                                                                                                                                                                                                                                                                    |           |                |   |      |
|                                                                                                                                                                                                                                                                    |           | 1              |   |      |

| Example 1 - Choosing a steel sub-grade                                                                                                                                            | Sheet  | 5 of          | 6            | Rev  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|--------------|------|
| 1.5 Column sub-grade                                                                                                                                                              |        |               |              |      |
| Consider the fillet weld at the edges of the column flange                                                                                                                        |        |               |              |      |
| Classify detail                                                                                                                                                                   |        |               |              |      |
| The dimensions of the welded attachment considered here fall outside of limits given in Table NA.1 as,                                                                            | the    | Tabl          | e NA         | 1    |
| 'Length of fillet weld' = $43.5 \text{ mm} < 150 \text{ mm}$ .                                                                                                                    |        | Shee          | t 2          |      |
| Therefore,                                                                                                                                                                        |        |               |              |      |
| $\Delta T_{\rm RD} = 0^{\circ} \rm C$                                                                                                                                             |        | NA.           | 2.1.1        | .2   |
| For external steelwork and $\Delta T_{RD} = 0$ °C, the detail type is:<br>'welded – moderate'                                                                                     |        | PD (<br>Tabl  | 6695-<br>e 3 | 1-10 |
| Tensile stress level                                                                                                                                                              |        |               |              |      |
| The tensile stress level at the detail is zero as the vertical compression p<br>in the UKC due to vertical actions is greater than the localised tension ap<br>by the beam. Thus, |        | PD (<br>2.2ii | 5695-<br>)   | 1-10 |
| $\frac{\sigma_{\rm Ed}}{f_y(t)} < 0$                                                                                                                                              |        |               |              |      |
| Initial column in table                                                                                                                                                           |        |               |              |      |
| For a 'welded – moderate' detail and $\frac{\sigma_{\rm Ed}}{f_y(t)} = 0$                                                                                                         |        | PD (<br>Tabl  | 6695-<br>e 3 | 1-10 |
| The initial column in the table is 'Comb 4'.                                                                                                                                      |        |               |              |      |
| Adjustment to table column selection                                                                                                                                              |        |               |              |      |
| Verify whether the initial table column selection needs to be altered for a criteria given in Note A to Table 3.                                                                  | the    |               |              |      |
| Charpy test temperature                                                                                                                                                           |        |               |              |      |
| No adjustment is required, see Sheet 4.                                                                                                                                           |        |               |              |      |
| Gross stress concentration factor ( $\Delta T_{Rg}$ )                                                                                                                             |        |               |              |      |
| As stiffeners are present there are no areas of gross stress concentration column flange. Therefore the criterion is met, thus                                                    | on the |               |              |      |
| $\Delta T_{\rm Rg} = 0$                                                                                                                                                           |        |               |              |      |
| Radiation loss ( $\Delta T_r$ )                                                                                                                                                   |        |               |              |      |
| As for the beam $\Delta T_{\rm r} = 0$                                                                                                                                            |        | Shee          | t 4          |      |
| Strain rate ( $\Delta T_{\hat{\epsilon}}$ )                                                                                                                                       |        |               |              |      |
| As for the beam $\Delta T_{\varepsilon} = 0$                                                                                                                                      |        | Shee          | t 4          |      |
|                                                                                                                                                                                   |        |               |              |      |
|                                                                                                                                                                                   |        |               |              |      |
|                                                                                                                                                                                   |        |               |              |      |

| Cold forming $(\Delta T_{\varepsilon_{ct}})$<br>The sections considered here are hot rolled, therefore no cold forming is<br>present and the criterion is met, thus<br>$\Delta T_{\varepsilon_{ct}} = 0$<br>As all four criteria are met, the table column selection does not need to be<br>adjusted.<br>For S355, 'welded – moderate' and $\frac{\sigma_{Ed}}{f_y(t)} = 0$ , the limiting steel thicknesses<br>are:<br>JR 22.5 mm<br>J0 67.5 mm<br>22.5 mm < 31.4 mm < 67.5 mm<br>Therefore, an appropriate steel grade for the UKC section is S355J0.<br>Note: If the thickness had required the use of M, N, HL or NL sub-grade, it<br>should be noted the $f_y$ and $f_u$ values may differ slightly from those for<br>sub-grades JR, J2 and J0. |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| The sections considered here are hot rolled, therefore no cold forming is<br>present and the criterion is met, thus<br>$\Delta T_{\varepsilon_{cr}} = 0$<br>As all four criteria are met, the table column selection does not need to be<br>adjusted.<br>For S355, 'welded – moderate' and $\frac{\sigma_{Ed}}{f_y(t)} = 0$ , the limiting steel thicknesses<br>are:<br>JR 22.5 mm<br>J0 67.5 mm<br>22.5 mm < 31.4 mm < 67.5 mm<br>Therefore, an appropriate steel grade for the UKC section is S355J0.<br>Note: If the thickness had required the use of M, N, HL or NL sub-grade, it<br>should be noted the $f_y$ and $f_u$ values may differ slightly from those for                                                                              |  |
| $\Delta T_{\varepsilon_{cf}} = 0$ As all four criteria are met, the table column selection does not need to be<br>adjusted.<br>For S355, 'welded – moderate' and $\frac{\sigma_{Ed}}{f_y(t)} = 0$ , the limiting steel thicknesses<br>are:<br>JR 22.5 mm<br>J0 67.5 mm<br>22.5 mm < 31.4 mm < 67.5 mm<br>Therefore, an appropriate steel grade for the UKC section is S355J0.<br>Note: If the thickness had required the use of M, N, HL or NL sub-grade, it<br>should be noted the $f_y$ and $f_u$ values may differ slightly from those for                                                                                                                                                                                                        |  |
| adjusted.<br>For S355, 'welded – moderate' and $\frac{\sigma_{Ed}}{f_y(t)} = 0$ , the limiting steel thicknesses<br>are:<br>JR 22.5 mm<br>J0 67.5 mm<br>22.5 mm < 31.4 mm < 67.5 mm<br>Therefore, an appropriate steel grade for the UKC section is S355J0.<br>Note: If the thickness had required the use of M, N, HL or NL sub-grade, it<br>should be noted the $f_y$ and $f_u$ values may differ slightly from those for                                                                                                                                                                                                                                                                                                                          |  |
| For S355, 'welded – moderate' and $\frac{f_y}{f_y(t)} = 0$ , the limiting steel thicknesses<br>are:<br>JR 22.5 mm<br>J0 67.5 mm<br>22.5 mm < 31.4 mm < 67.5 mm<br>Therefore, an appropriate steel grade for the UKC section is S355J0.<br>Note: If the thickness had required the use of M, N, HL or NL sub-grade, it<br>should be noted the $f_y$ and $f_u$ values may differ slightly from those for                                                                                                                                                                                                                                                                                                                                               |  |
| <ul> <li>JR 22.5 mm</li> <li>J0 67.5 mm</li> <li>22.5 mm &lt; 31.4 mm &lt; 67.5 mm</li> <li>Therefore, an appropriate steel grade for the UKC section is S355J0.</li> <li>Note: If the thickness had required the use of M, N, HL or NL sub-grade, it should be noted the f<sub>y</sub> and f<sub>u</sub> values may differ slightly from those for</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                       |  |
| <ul> <li>22.5 mm &lt; 31.4 mm &lt; 67.5 mm</li> <li>Therefore, an appropriate steel grade for the UKC section is S355J0.</li> <li>Note: If the thickness had required the use of M, N, HL or NL sub-grade, it should be noted the f<sub>y</sub> and f<sub>u</sub> values may differ slightly from those for</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Note: If the thickness had required the use of M, N, HL or NL sub-grade, it should be noted the $f_y$ and $f_u$ values may differ slightly from those for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Note: If the thickness had required the use of M, N, HL or NL sub-grade, it should be noted the $f_y$ and $f_u$ values may differ slightly from those for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                |                                                                                                            |                                        |                              |                      |                                     | <u>.</u>                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------|----------------------|-------------------------------------|---------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Job No.                                                                                        | CDS164                                                                                                     |                                        | Sheet                        | 1 of                 | 11                                  | Rev                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Job Title                                                                                      | Worked examined                                                                                            | mples to the                           | e Eurocode                   | es witl              | ı UK                                | NA                                                      |
| Silwood Park, Ascot, Berks SL5 7QN<br>Telephone: (01344) 636525                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Subject                                                                                        | Example 2 -<br>beam                                                                                        | Simply sup                             | ported lat                   | erally               | restra                              | ained                                                   |
| Fax: (01344) 636570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Client                                                                                         | 0.01                                                                                                       | Made by                                | MEB                          | Date                 | Feb                                 | 2009                                                    |
| CALCULATION SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                | SCI                                                                                                        | Checked by                             | DGB                          | Date                 | Jul 2                               | 2009                                                    |
| 2 Simply support beam 2.1 Scope The beam shown in Figure 2.1 is full has bearing lengths of 50 mm at the point load. Design the beam in S27: 3250 Figure 2.1 The design aspects covered in this exist. • Calculation of design values of a • Cross section classification • Cross section al resistance: <ul> <li>Shear</li> <li>Bending moment</li> </ul> • Resistance of web to transverse for vertical deflection of beam at SI 2.2.1 Permanent actions Uniformly distributed load (including Concentrated load | Ily latera<br>unstiffer<br>$F_{2,d}$<br>-75<br>-6500<br>xample a<br>ctions fo<br>forces<br>-S. | lly restrained<br>hed supports a<br>pr the loading<br>3250<br>re:<br>re:<br>r ULS and SI<br>sight) $g_1 =$ | along its le<br>nd 75 mm<br>shown belo | ngth and<br>under the<br>ow. | BS 1<br>2003<br>Nati | EN 19<br>5, inc<br>onal 1<br>ss oth | s are to<br>193-1-1:<br>luding its<br>Annex,<br>herwise |

| Example 2 - Simply supported laterally restrained beam                                                                                                                                                                                                                                                                                                                                                               | Sheet 2       | 2 of 11               | Rev |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|-----|
| 2.2.2 Variable actions                                                                                                                                                                                                                                                                                                                                                                                               |               |                       |     |
| Uniformly distributed load $q_1 = 30 \text{ kN/m}$ Concentrated load $Q_2 = 50 \text{ kN}$                                                                                                                                                                                                                                                                                                                           |               |                       |     |
| The variable actions are not due to storage and are not independent of other.                                                                                                                                                                                                                                                                                                                                        | each          |                       |     |
| 2.2.3 Partial factors for actions                                                                                                                                                                                                                                                                                                                                                                                    |               |                       |     |
| For the design of structural members not involving geotechnical action partial factors for actions to be used for ultimate limit state design show obtained from Table A1.2(B), as modified by the National Annex.                                                                                                                                                                                                   |               | BS EN 19<br>A1.3.1(4) |     |
| Partial factor for permanent actions $\gamma_{G} = 1.35$<br>Partial factor for variable actions $\gamma_{Q} = 1.50$<br>Reduction factor $\xi = 0.925$<br>Note: For this example, the combination coefficient ( $\psi_{0}$ ) is not require<br>section 2.2.4.                                                                                                                                                         | ed, see       | Table<br>NA.A1.2      | (B) |
| 2.2.4 Design values of combined actions for Ultimate Lines State                                                                                                                                                                                                                                                                                                                                                     | mit           |                       |     |
| BS EN 1990 presents two options for determining the effect due to combination of actions to be used for the ultimate limit state verification options are to use Expression (6.10) or to determine the less favourable combination from Expression (6.10a) and (6.10b). The UK National ABS EN 1990 allows the designer to choose which of those options to use Here Expressions (6.10a) and (6.10b) are considered. | e<br>Annex to |                       |     |
| $\gamma_{Gj,sup} G_{j,sup} + \gamma_{Gj,inf} G_{j,inf} + \gamma_{Q,1} \psi_{0,1} Q_1 + \gamma_{Q,i} \psi_{0,i} Q_i $ (6)                                                                                                                                                                                                                                                                                             | .10a)         | BS EN 19              | 990 |
| $\xi \gamma_{Gj,sup} G_{j,sup} + \gamma_{Gj,inf} G_{j,inf} + \gamma_{Q,1} Q_1 + \gamma_{Q,i} \psi_{0,i} Q_i $ (6)                                                                                                                                                                                                                                                                                                    | .10b)         | Table NA.A1.2         | (B) |
| where:                                                                                                                                                                                                                                                                                                                                                                                                               |               |                       |     |
| Subscript 'sup' defines an unfavourable action                                                                                                                                                                                                                                                                                                                                                                       |               |                       |     |
| Subscript 'inf' defines a favourable action.                                                                                                                                                                                                                                                                                                                                                                         |               |                       |     |
| According to the National Annex, these expressions may be used when                                                                                                                                                                                                                                                                                                                                                  | e:            |                       |     |
| • The ULS 'STR' (strength) is being considered                                                                                                                                                                                                                                                                                                                                                                       |               |                       |     |
| • The structure is to be constructed in the UK                                                                                                                                                                                                                                                                                                                                                                       |               |                       |     |
| • Only one variable action is present from categories A to H, (storage) given in BS EN 1990.                                                                                                                                                                                                                                                                                                                         | except E      |                       |     |
| Expression (6.10b) will normally be the governing case in the UK, exc<br>cases were the permanent actions are greater than 4.5 times the variable<br>actions.                                                                                                                                                                                                                                                        |               |                       |     |
| Therefore, as the permanent actions are not greater than $4.5$ times the actions, only Expression (6.10b) is considered here.                                                                                                                                                                                                                                                                                        | variable      |                       |     |
| As the variable actions are not independent of each other, there are no accompanying variable actions. Therefore, the $Q_i$ variable is not consthere.                                                                                                                                                                                                                                                               |               |                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 1                     |     |

| Example 2 - Simply supported la                                                          | terally restrained beam                                                                                                     | Sheet | 3 of | 11            | Rev     |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------|------|---------------|---------|
|                                                                                          |                                                                                                                             | SHEEL |      | 11            | 1100    |
| UDL (including self weight)                                                              |                                                                                                                             | ,     |      |               |         |
| $F_{1,d} = \xi \gamma_G G_1 + \gamma_Q Q_1 = (0.925)$                                    | $5 \times 1.35 \times 15 + (1.5 \times 30) = 63.7 \text{ kN/}$                                                              | m     |      |               |         |
| Concentrated load                                                                        |                                                                                                                             |       |      |               |         |
| $F_{2,d} = \xi \gamma_G G_2 + \gamma_Q Q_2 = (0.92)$                                     | $5 \times 1.35 \times 40 + (1.5 \times 50) = 125.0 \text{ km}$                                                              | N     |      |               |         |
| 2.3 Design bending                                                                       | moments and shear forc                                                                                                      | es    |      |               |         |
| Span of beam $L = 6500 \text{ mm}$                                                       |                                                                                                                             |       |      |               |         |
| Maximum design bending moment                                                            | t occurs at mid-span                                                                                                        |       |      |               |         |
| $M_{\rm Ed} = \frac{F_{1,\rm d}L^2}{8} + \frac{F_{2,\rm d}L}{4} = \frac{63.7}{4}$        | $\frac{\times 6.5^2}{8} + \frac{125 \times 6.5}{4} = 539.5$ kNm                                                             |       |      |               |         |
| Maximum design shear force occu                                                          | irs at the supports                                                                                                         |       |      |               |         |
|                                                                                          |                                                                                                                             |       |      |               |         |
| $V_{\rm Ed} = \frac{F_{1,\rm d}L}{2} + \frac{F_{2,\rm d}}{2} = \frac{63.7 \times 6.}{2}$ | $\frac{3}{2} + \frac{123}{2} = 269.5$ kN                                                                                    |       |      |               |         |
| Design shear force at mid-span                                                           |                                                                                                                             |       |      |               |         |
| $V_{\rm c,Ed} = V_{\rm Ed} - \frac{F_{\rm 1,d}L}{2} = 269.50 - \frac{63}{2}$             | $\frac{6.7 \times 6.5}{2} = 62.5$ kN                                                                                        |       |      |               |         |
| 2.4 Section propertie                                                                    | es                                                                                                                          |       |      |               |         |
| $533\times210\times92$ UKB in S275                                                       |                                                                                                                             |       |      |               |         |
| From section property tables:                                                            |                                                                                                                             |       |      |               |         |
| Depth                                                                                    | h = 533.1  mm                                                                                                               |       | P36  | 53            |         |
| Width                                                                                    | b = 209.3  mm                                                                                                               |       |      |               |         |
| Web thickness                                                                            | $t_{\rm w} = 10.1 \text{ mm}$                                                                                               |       |      |               |         |
| Flange thickness                                                                         | $t_{\rm f} = 15.6  {\rm mm}$                                                                                                |       |      |               |         |
| Root radius                                                                              | r = 12.7  mm<br>d = 476.5  mm                                                                                               |       |      |               |         |
| Depth between flange fillets<br>Second moment of area, y-y axis                          | d = 476.5  mm<br>$I_y = 55\ 200 \text{ cm}^4$                                                                               |       |      |               |         |
| Plastic modulus, y-y axis                                                                | $W_{\rm pl,y} = 2 360 {\rm cm}^3$                                                                                           |       |      |               |         |
| Area                                                                                     | $A = 117 \text{ cm}^2$                                                                                                      |       |      |               |         |
| Modulus of elasticity                                                                    | $E = 210\ 000\ \text{N/mm}^2$                                                                                               |       | 3.2  | .6(1)         |         |
| strength $(f_y)$ and the ultimate stren                                                  | the UK, the nominal values of the yie<br>gth $(f_u)$ for structural steel should be<br>d. Where a range is given, the lowes | those | NA   | 2.4           |         |
| For S275 steel and $t \le 16$ mm<br>Yield strength                                       | $f_{\rm y} = R_{\rm eH} = 275 \ {\rm N/mm^2}$                                                                               |       |      | EN 1<br>ole 7 | 10025-2 |
|                                                                                          |                                                                                                                             |       |      |               |         |
|                                                                                          |                                                                                                                             |       |      |               |         |
|                                                                                          |                                                                                                                             |       |      |               |         |
|                                                                                          |                                                                                                                             |       |      |               |         |

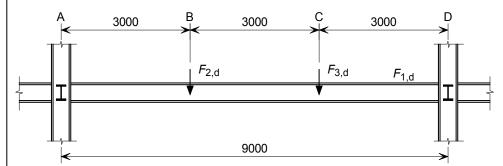
| Example 2 - Simply supported laterally restrained beam Sheet                                           | 4 of 11 Rev    |
|--------------------------------------------------------------------------------------------------------|----------------|
| 2.5 Cross section classification                                                                       |                |
| $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$                                 | Table 5.2      |
| Outstand of compression flange                                                                         |                |
| $c = \frac{b - t_{\rm w} - 2r}{2} = \frac{209.3 - 10.1 - (2 \times 12.7)}{2} = 86.90 \text{ mm}$       |                |
| $\frac{c}{t_{\rm f}} = \frac{86.90}{15.6} = 5.57$                                                      |                |
| The limiting value for Class 1 is $\frac{c}{t_{\rm f}} \le 9\varepsilon = 9 \times 0.92 = 8.28$        |                |
| 5.57 < 8.28                                                                                            |                |
| Therefore the flange is Class 1 under compression.                                                     |                |
| Web subject to bending<br>c = d = 476.5  mm                                                            | Table 5.2      |
| $\frac{c}{t_{\rm w}} = \frac{476.5}{10.1} = 47.18$                                                     |                |
| The limiting value for Class 1 is $\frac{c}{2} \le 72 \varepsilon = 72 \times 0.92 = 66.24$            |                |
| $t_{\rm w}$ 47.18 < 66.24                                                                              |                |
| Therefore the web is Class 1 under bending.                                                            |                |
| Therefore the section is Class 1 under bending.                                                        |                |
| 2.6 Partial factors for resistance                                                                     |                |
| $\gamma_{\rm M0} = 1.0$                                                                                | NA.2.15        |
| $\gamma_{\rm M1} = 1.0$                                                                                |                |
| 2.7 Cross-sectional resistance                                                                         |                |
| 2.7.1 Shear buckling                                                                                   |                |
| The shear buckling resistance for webs should be verified according to Section 5 of BS EN 1993-1-5 if: | 6.2.6(6)       |
| $\frac{h_{\rm w}}{t_{\rm w}} > \frac{72\varepsilon}{\eta}$                                             | Eq (6.23)      |
| $\eta = 1.0$                                                                                           | BS EN 1993-1-5 |
| $h_{\rm w} = h - 2t_{\rm f} = 533.1 - (2 \times 15.6) = 501.9 \text{ mm}$                              | NA.2.4         |
|                                                                                                        |                |
|                                                                                                        |                |
|                                                                                                        |                |

| Example 2 - Simply supported laterally restrained beam sh                                                                                                           | eet 5             | of 1     | Rev |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|-----|
|                                                                                                                                                                     |                   |          |     |
| $\frac{h_{\rm w}}{t_{\rm w}} = \frac{501.9}{10.1} = 49.7$                                                                                                           |                   |          |     |
| $72\frac{\varepsilon}{\eta} = 72 \times \frac{0.92}{1.0} = 66.2$                                                                                                    |                   |          |     |
| 49.7 < 66.2                                                                                                                                                         |                   |          |     |
| Therefore the shear buckling resistance of the web does not need to be verified.                                                                                    |                   |          |     |
| 2.7.2 Shear resistance                                                                                                                                              |                   |          |     |
| Verify that:                                                                                                                                                        |                   | 6.2.6(1  | )   |
| $\frac{V_{\rm Ed}}{V_{\rm c,Rd}} \le 1.0$                                                                                                                           |                   | Eq (6.1  | 7)  |
| $V_{c,Rd}$ is the design plastic shear resistance ( $V_{pl,Rd}$ ).                                                                                                  |                   |          |     |
| $A_{\rm v} \left( f_{\rm v} / \sqrt{3} \right)$                                                                                                                     |                   | 6.2.6(2  | )   |
| $V_{\rm c,Rd} = V_{\rm pl,Rd} = \frac{A_{\rm v} \left(f_{\rm y} / \sqrt{3}\right)}{\gamma_{\rm M0}}$                                                                |                   | Eq (6.1  | 8)  |
| $A_v$ is the shear area and is determined as follows for rolled I and H section with the load applied parallel to the web.                                          | ns                |          |     |
| $A_{\rm v} = A - 2bt_{\rm f} + t_{\rm f} (t_{\rm w} + 2r)$ But not less than $\eta h_{\rm w} t_{\rm w}$                                                             |                   | 6.2.6(3  | )   |
| $= 117 \times 10^{2} - (2 \times 209.3 \times 15.6) + 15.6 \times (10.1 + (2 \times 12.7)) = 5723.6$                                                                | 0 mm <sup>2</sup> |          |     |
| $\eta h_{\rm w} t_{\rm w} = 1.0 \times 501.9 \times 10.1 = 5069.2 \ {\rm mm}^2$                                                                                     |                   |          |     |
| Therefore,                                                                                                                                                          |                   |          |     |
| $A_{\rm v} = 5723.6 \ {\rm mm}^2$                                                                                                                                   |                   |          |     |
| The design plastic shear resistance is:                                                                                                                             |                   | 6.2.6(2  | )   |
| $V_{\text{pl.Rd}} = \frac{A_{\text{v}} (f_{\text{y}} / \sqrt{3})}{\gamma_{\text{M0}}} = \frac{5723.6 \times (275 / \sqrt{3})}{1.0} \times 10^{-3} = 909 \text{ kN}$ |                   | Eq (6.1  | 8)  |
| Maximum design shear $V_{\rm Ed} = 269.5$ kN                                                                                                                        |                   | Sheet 2  |     |
| $\frac{V_{\rm Ed}}{V_{\rm c.Rd}} = \frac{269.5}{909} = 0.30 < 1.0$                                                                                                  |                   |          |     |
| Therefore the shear resistance of the section is adequate.                                                                                                          |                   |          |     |
| 2.7.3 Resistance to bending                                                                                                                                         |                   |          |     |
| Verify that:                                                                                                                                                        |                   | 6.2.5(1) | )   |
| $\frac{M_{\rm Ed}}{M_{\rm Ed}} < 1.0$                                                                                                                               |                   | Eq (6.1  | 2)  |
| $\frac{M_{\rm Ed}}{M_{\rm c,Rd}} \le 1.0$                                                                                                                           |                   |          |     |
|                                                                                                                                                                     |                   |          |     |
|                                                                                                                                                                     |                   |          |     |
|                                                                                                                                                                     |                   |          |     |

| Example 2 - Simply supported laterally restrained beam                                                                                                                                                                                                      | Sheet  | 6 of           | 11           | Rev                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|--------------|-----------------------------|
| At the point of maximum bending moment (mid-span), verify whether t<br>shear force will reduce the bending resistance of the cross section.                                                                                                                 | he     | 6.2.8          | 8(2)         |                             |
| $\frac{V_{\rm c,Rd}}{2} = \frac{909}{2} = 454.5 \text{ kN}$                                                                                                                                                                                                 |        |                |              |                             |
| Shear force at maximum bending moment $V_{c,Ed} = 62.5$ kN                                                                                                                                                                                                  |        | Shee           | t 3          |                             |
| 62.5  kN < 454.5  kN                                                                                                                                                                                                                                        |        |                |              |                             |
| Therefore <b>no reduction</b> in bending resistance due to shear is required.                                                                                                                                                                               |        |                |              |                             |
| The design resistance for bending for Class 1 and 2 cross sections is:                                                                                                                                                                                      |        | 6.2.5          | 5(2)         |                             |
| $M_{\rm c,Rd} = M_{\rm pl,Rd} = \frac{W_{\rm pl,y} f_y}{\gamma_{\rm M0}} = \frac{2360 \times 10^3 \times 275}{1.0} \times 10^{-6} = 649.0 \text{ kNz}$                                                                                                      | m      | Eq (           | 6.13)        |                             |
| $\frac{M_{\rm Ed}}{M_{\rm CBd}} = \frac{539.5}{649} = 0.83 < 1.0$                                                                                                                                                                                           |        | 6.2.5          | 5(1)         |                             |
| $M_{\rm c,Rd}$ 649                                                                                                                                                                                                                                          |        | Eq (           | 6.12)        |                             |
| Therefore the bending moment resistance is adequate.                                                                                                                                                                                                        |        |                |              |                             |
| <b>2.7.4 Resistance of the web to transverse forces</b><br>This verification is only required when there is bearing on the beam. B:<br>1993-1-1 does not give design verifications for the resistance of webs,<br>designers are referred to BS EN 1993-1-5. | s en   | in Se<br>refer | ection<br>to | s given<br>2.7.4<br>193-1-5 |
| Verify that:                                                                                                                                                                                                                                                |        |                |              |                             |
| $\eta_2 = \frac{F_{\rm Ed}}{f_{\rm vw} L_{\rm eff} t_{\rm w} / \gamma_{\rm M1}} \le 1.0$                                                                                                                                                                    |        | 6.6(1          | l), Eo       | q (6.14)                    |
| where:                                                                                                                                                                                                                                                      |        |                |              |                             |
| $F_{\rm Ed}$ is the design transverse force – here this is taken to be the shear force at the supports as these have the smallest bearing (50 mm)                                                                                                           |        |                |              |                             |
| $\frac{f_{\rm yw}L_{\rm eff}t_{\rm w}}{\gamma_{\rm M1}} = F_{\rm Rd}  (\text{Design resistance})$                                                                                                                                                           |        |                |              |                             |
| $L_{\rm eff}$ is the effective length for resistance to transverse forces, given $L_{\rm eff} = \chi_{\rm F} \ell_{\rm y}$                                                                                                                                  | ven by | ,              |              |                             |
| $\chi_{\rm F} = rac{0.5}{\overline{\lambda}_{\rm F}} \le 1.0$                                                                                                                                                                                              |        | 6.4(1          | l) Eq        | (6.3)                       |
| $\overline{\lambda}_{\rm F} = \sqrt{rac{\ell_{\rm y} t_{\rm w} f_{\rm yw}}{F_{\rm cr}}}$                                                                                                                                                                   |        | 6.4(1          | l) Eq        | (6.4)                       |
| Determine $\ell$ and $\overline{1}$                                                                                                                                                                                                                         |        |                |              |                             |
| <b>Determine</b> $\ell_y$ and $\lambda_F$<br>The force is applied to one flange adjacent to an unstiffened end and the                                                                                                                                      | 2      | 6.10           | 2)c) &       |                             |
| compression flange is restrained, therefore it is Type c).                                                                                                                                                                                                  | -      |                | re 6.        |                             |
|                                                                                                                                                                                                                                                             |        |                |              |                             |
|                                                                                                                                                                                                                                                             |        |                |              |                             |

| Example 2 - Simply supported laterally restrained beam Sheet                                                                                                                | 7 of 11 Rev            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| The length of stiff bearing on the flange is the length over which the load is effectively distributed at a slope of 1:1. However, $s_s$ should not be greater than $h_w$ . | 6.3(1) &<br>Figure 6.2 |
| For a slope of 1:1 $s_s = 50 \text{ mm} < h_w = 501.9 \text{ mm}$                                                                                                           |                        |
| Therefore,                                                                                                                                                                  |                        |
| $s_{\rm s} = 50 \text{ mm}$                                                                                                                                                 |                        |
| For webs without longitudinal stiffeners $k_{\rm F}$ should be obtained from Figure 6.                                                                                      | 1 6.4(2)               |
| For Type c)                                                                                                                                                                 | Figure 6.1             |
| $k_{\rm F} = 2 + 6 \left( \frac{s_{\rm s} + c}{h_{\rm w}} \right) \le 6$                                                                                                    |                        |
| c = 0  mm                                                                                                                                                                   |                        |
| $k_{\rm F} = 2 + 6 \times \left(\frac{50 + 0}{501.9}\right) = 2.60 < 6$                                                                                                     |                        |
| For Type c) $\ell_y$ is the smallest of the values determined from Equations (6.10) (6.11) and (6.12).                                                                      | , 6.5(3)               |
| $\ell_y = s_s + 2t_f (1 + \sqrt{m_1 + m_2})$ but $\ell_y \le$ distance between adjacent stiffeners                                                                          | 6.5(2)<br>Eq (6.10)    |
| As there are no stiffeners in the beam in this example neglect the above limit for $\ell_y$ .                                                                               | Lq (0.10)              |
| Or                                                                                                                                                                          |                        |
| $\ell_{\rm y} = \ell_{\rm e} + t_{\rm f} \sqrt{\frac{m_1}{2} + \left(\frac{\ell_{\rm e}}{t_{\rm f}}\right)^2 + m_2}$                                                        | 6.5(3)<br>Eq (6.11)    |
| Or                                                                                                                                                                          |                        |
| $\ell_{\rm y} = \ell_{\rm e} + t_{\rm f} \sqrt{m_1 + m_2}$                                                                                                                  | Eq (6.12)              |
| where:                                                                                                                                                                      |                        |
| $\ell_{\rm e} = \frac{k_{\rm F} E t_{\rm w}^2}{2 f_{\rm yw} h_{\rm w}} \le s_{\rm s} + c$                                                                                   | Eq (6.13)              |
| $\ell_{\rm e} = \frac{2.6 \times 210000 \times 10.1^2}{2 \times 275 \times 501.9} = 201.77 \text{ mm} > s_{\rm s} + c = 50.0 \text{ mm}$                                    |                        |
| Therefore<br>$\ell_e = s_s + c = 50.0 \text{ mm}$                                                                                                                           |                        |
| Factors $m_1$ and $m_2$ are determined as follows:                                                                                                                          |                        |
|                                                                                                                                                                             |                        |
| $m_1 = \frac{f_{\rm yf} b_{\rm f}}{f_{\rm yw} t_{\rm w}} = \frac{275 \times 209.3}{275 \times 10.1} = 20.72$                                                                | 6.5(1) Eq (6.8)        |
| $m_2 = 0.02 \left(\frac{h_{\rm w}}{t_f}\right)^2 = 0.02 \times \left(\frac{501.9}{15.6}\right)^2 = 20.70 \text{ when } \overline{\lambda}_{\rm F} > 0.5$                    | 6.5(1) Eq (6.9)        |
| Or _                                                                                                                                                                        |                        |
| $m_2 = 0$ when $\lambda_{\rm F} \le 0.5$                                                                                                                                    |                        |

| Example 2 - Simply supported laterally restrained beam Sheet                                                                                                            | 3 of 11 Rev         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| a) First, consider $m_2 = 0$                                                                                                                                            |                     |
| $\ell_{y} = 50 + \left[ 2 \times 15.6 \times \left( 1 + \sqrt{20.72 + 0} \right) \right] = 223.22 \text{ mm}$                                                           | Eq (6.10)           |
| Or                                                                                                                                                                      |                     |
| $\ell_{y} = \ell_{e} + t_{f} \sqrt{\frac{m_{1}}{2} + \left(\frac{\ell_{e}}{t_{f}}\right)^{2} + m_{2}}$                                                                  | 6.5(3) Eq (6.11)    |
| $= 50.0 + 15.6 \times \sqrt{\frac{20.72}{2} + \left(\frac{50}{15.6}\right)^2 + 0} = 120.86 \text{ mm}$                                                                  |                     |
| Or                                                                                                                                                                      |                     |
| $\ell_y = \ell_e + t_f \sqrt{m_1 + m_2} = 50 + 15.6 \times \sqrt{20.72 + 0} = 121.01 \text{ mm}$                                                                        | 6.5(3) Eq (6.12)    |
| As 120.86 mm < 121.01 mm < 223.22 mm                                                                                                                                    |                     |
| $\ell_y = 120.86 \text{ mm}$                                                                                                                                            |                     |
| $\overline{\lambda}_{\rm F} = \sqrt{\frac{\ell_{\rm y} t_{\rm w} f_{\rm yw}}{F_{\rm cr}}}$                                                                              | 6.4(1) Eq (6.4)     |
| $f_{\rm yw} = 275 \text{ N/mm}^2$                                                                                                                                       |                     |
| $F_{\rm cr} = 0.9 k_{\rm F} E \frac{t_{\rm w}^3}{h_{\rm w}} = 0.9 \times 2.6 \times 210000 \times \frac{10.1^3}{501.9} \times 10^{-3} = 1009 \text{ kN}$                | 6.4(1) Eq (6.5)     |
| Therefore                                                                                                                                                               |                     |
| $\overline{\lambda}_{\rm F} = \sqrt{\frac{\ell_{\rm y} t_{\rm w} f_{\rm yw}}{F_{\rm cr}}} = \sqrt{\frac{120.86 \times 10.1 \times 275}{1009 \times 10^3}} = 0.58 > 0.5$ | 6.4(1) Eq (6.4)     |
| As $\overline{\lambda}_{\rm F} > 0.5$ , $m_2$ must be determined and $\ell_y$ recalculated                                                                              |                     |
| $m_2 = 20.70$                                                                                                                                                           | Sheet 7             |
| b) Recalculate for $m_2 = 20.70$                                                                                                                                        |                     |
| $\ell_y = 50 + \left[ 2 \times 15.6 \times \left( 1 + \sqrt{20.72 + 20.70} \right) \right] = 282.00 \text{ mm}$                                                         | 6.5(2)<br>Eq (6.10) |
| Or                                                                                                                                                                      |                     |
| $\ell_y = 50.0 + 15.6 \times \sqrt{\frac{20.72}{2} + \left(\frac{50}{15.6}\right)^2 + 20.70} = 150.29 \text{ mm}$                                                       | 6.5(3)<br>Eq (6.11) |
| Or                                                                                                                                                                      |                     |
| $\ell_y = 50 + 15.6 \times \sqrt{20.72 + 20.70} = 150.40 \text{ mm}$                                                                                                    | 6.5(3) Eq (6.12)    |
| As 150.29 mm < 150.40 mm < 282.00 mm                                                                                                                                    |                     |
| $\ell_y = 150.29 \text{ mm}$                                                                                                                                            |                     |
|                                                                                                                                                                         |                     |
|                                                                                                                                                                         |                     |
|                                                                                                                                                                         |                     |


| Example 2 - Simply supported laterally restrained beam Sh                                                                                                                                                                                                                                                                                                               | eet 9 | ) of 11          | Rev              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                         |       | 6.4(1) E         |                  |
| $\overline{\lambda}_{\rm F} = \sqrt{\frac{\ell_{\rm y} t_{\rm w} f_{\rm yw}}{F_{\rm cr}}} = \sqrt{\frac{150.29 \times 10.1 \times 275}{1009 \times 10^3}} = 0.64 > 0.5$<br>As 0.64 > 0.5, $\overline{\lambda}_{\rm F} = 0.64$                                                                                                                                           |       | 0.4(1) 1         | .q (0.4 <i>)</i> |
| As $0.04 > 0.3$ , $\lambda_{\rm F} = 0.04$                                                                                                                                                                                                                                                                                                                              |       |                  |                  |
| Determine $\chi_{\rm F}$                                                                                                                                                                                                                                                                                                                                                |       |                  |                  |
| $\chi_{\rm F} = \frac{0.5}{\overline{\lambda}_{\rm F}} \le 1.0$                                                                                                                                                                                                                                                                                                         |       | 6.4(1) E         | Eq (6.3)         |
| $\chi_{\rm F} = \frac{0.5}{0.64} = 0.78$                                                                                                                                                                                                                                                                                                                                |       |                  |                  |
| Determine <i>L</i> <sub>eff</sub>                                                                                                                                                                                                                                                                                                                                       |       |                  |                  |
| $L_{\rm eff} = \chi_{\rm F} \ell_{\rm y} = 0.78 \times 150.29 = 117.23 {\rm mm}$                                                                                                                                                                                                                                                                                        |       | 6.2(1) E         | lq (6.2)         |
| Determine <i>F</i> <sub>Rd</sub>                                                                                                                                                                                                                                                                                                                                        |       |                  |                  |
| $F_{\rm Rd} = \frac{f_{\rm yw} L_{\rm eff} t_{\rm w}}{\gamma_{\rm M1}} = \frac{275 \times 117.23 \times 10.1}{1.0} \times 10^{-3} = 326 \text{ kN}$                                                                                                                                                                                                                     |       | 6.2(1) E         | čq (6.1)         |
| Determine $\eta_2$                                                                                                                                                                                                                                                                                                                                                      |       |                  |                  |
| $\eta_2 = \frac{F_{\rm Ed}}{f_{\rm yw} L_{\rm eff} t_{\rm w} / \gamma_{\rm M1}} = \frac{V_{\rm Ed}}{F_{\rm Rd}} = \frac{269.5}{326} = 0.83 < 1.0$                                                                                                                                                                                                                       |       | 6.6(1) E         | Cq (6.14)        |
| Therefore the web resistance to transverse forces is adequate.                                                                                                                                                                                                                                                                                                          |       |                  |                  |
|                                                                                                                                                                                                                                                                                                                                                                         | _     |                  |                  |
| 2.8 Vertical deflection at serviceability limit st                                                                                                                                                                                                                                                                                                                      | ate   | 7 1(1)           |                  |
| A structure should be designed and constructed such that all relevant serviceability criteria are satisfied.                                                                                                                                                                                                                                                            |       | 7.1(1)           |                  |
| No specific requirements at SLS are given in BS EN 1993-1-1, 7.1; it is l<br>for the project to specify the limits, associated combinations of actions and<br>analysis model. Guidance on the selection of criteria is given in BS EN 1<br>A.1.4.                                                                                                                       | 1     |                  |                  |
| For this example, the only serviceability limit state that is to be considered<br>the vertical deflection under variable actions, because excessive deflection<br>would damage brittle finishes which are added after the permanent actions<br>occurred. The limiting deflection for this beam is taken to be span/360, w<br>is consistent with common design practice. | have  |                  |                  |
| 2.8.1 Design values of combined actions at Serviceability I<br>State                                                                                                                                                                                                                                                                                                    | .imit |                  |                  |
| As noted in BS EN 1990, the SLS partial factors on actions are taken as u and expression 6.14a is used to determine design effects. Additionally, as stated in Section 2.2.2, the variable actions are not independent and there                                                                                                                                        | ore   | BS EN<br>A1.4.1( |                  |
| no combination factors ( $\psi_i$ ) are required. Thus, the combination values o actions are given by:                                                                                                                                                                                                                                                                  | ť     |                  |                  |
| $F_{1,d,ser} = g_1 + q_1$ and $F_{2,d,ser} = G_2 + Q_2$                                                                                                                                                                                                                                                                                                                 |       |                  |                  |

| Example 2 - Simply supported laterally restrained beam s                                                                                                                                                                            | heet 1( | 0 of 11             | Rev |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|-----|
| As noted above, the permanent actions considered in this example occur<br>the construction process, therefore only the variable actions need to be<br>considered in the serviceability verification for the functioning of the stru | during  | BS EN 1<br>A1.4.3(3 | 990 |
| Thus $F_{1,d,ser} = q_1 = 30.0 \text{ kN/m}$ and $F_{2,d,ser} = Q_2 = 50.0 \text{ kN}$                                                                                                                                              |         |                     |     |
| 2.8.2 Design value of deflection                                                                                                                                                                                                    |         |                     |     |
| The vertical deflection is given by:                                                                                                                                                                                                |         |                     |     |
| $w = \left(\frac{1}{EI_y}\right) \left(\frac{5F_{1,d,ser}L^4}{384} + \frac{F_{2,d,ser}L^3}{48}\right)$                                                                                                                              |         |                     |     |
| $= \left(\frac{1}{210000 \times 55200 \times 10^4}\right) \times \left(\frac{5 \times 30 \times 6500^4}{384} + \frac{50000 \times 6500^3}{48}\right)$                                                                               |         |                     |     |
| = 8.5 mm                                                                                                                                                                                                                            |         |                     |     |
| The vertical deflection limit is                                                                                                                                                                                                    |         |                     |     |
| $w_{\rm lim} = \frac{L}{360} = \frac{6500}{360} = 18.1 \text{ mm}$                                                                                                                                                                  |         |                     |     |
| 8.5 mm < 18.1 mm                                                                                                                                                                                                                    |         |                     |     |
| Therefore the vertical deflection of the beam is satisfactory.                                                                                                                                                                      |         |                     |     |
| <b>2.9 Blue Book Approach</b><br>The design resistances may be obtained from SCI publication P363<br>Consider the $533 \times 210 \times 92$ UKB in S275                                                                            |         |                     |     |
| 2.9.1 Design values of actions for Ultimate Limit State (U                                                                                                                                                                          | LS)     |                     |     |
| Shear at the supports $V_{\rm Ed}$ = 269.5 kNShear at maximum bending moment $V_{\rm c,Ed}$ = 62.5 kNMaximum bending moment $M_{\rm Ed}$ = 539.5 kNm                                                                                |         | Sheet 3             |     |
| 2.9.2 Cross section classification                                                                                                                                                                                                  |         |                     |     |
| Under bending about the major axis $(y-y)$ the cross section is Class 1.                                                                                                                                                            |         | Page C-6            | 6   |
|                                                                                                                                                                                                                                     |         |                     |     |
| <b>2.9.3 Shear resistance</b><br>$V_{c,Rd} = 909 \text{ kN}$                                                                                                                                                                        |         | Page C-1            | .03 |
| $\frac{V_{\rm Ed}}{V_{\rm c,Rd}} = \frac{269.5}{909} = 0.30 < 1.0$                                                                                                                                                                  |         |                     |     |
| Therefore the shear resistance is adequate                                                                                                                                                                                          |         |                     |     |
| 2.9.4 Bending resistance                                                                                                                                                                                                            |         |                     |     |
| $\frac{V_{\rm c,Rd}}{2} = \frac{909}{2} = 454.5 \text{ kN}$                                                                                                                                                                         |         |                     |     |
| $454.5 \text{ kN} > V_{c,Ed} = 62.5 \text{ kN}$                                                                                                                                                                                     |         |                     |     |
| Therefore there is <b>no reduction</b> in the bending resistance.                                                                                                                                                                   |         |                     |     |
|                                                                                                                                                                                                                                     |         |                     |     |

| Examp                        | le 2 - Simply supported laterally restrained beam                                                                                     | Sheet  | 11 of | 11     | Rev |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------|-------|--------|-----|
| $M_{\rm c,y,Rd}$             | = 649  kNm                                                                                                                            |        | Pa    | ge C-6 | 56  |
|                              | $= \frac{539.5}{649} = 0.83 < 1.0$                                                                                                    |        |       |        |     |
| Therefor                     | e the bending moment resistance is adequate                                                                                           |        |       |        |     |
| 2.9.5                        | Resistance of the web to transverse forces at the e                                                                                   | end of | f     |        |     |
| $F_{ m Ed}$                  | $=V_{\rm Ed}$ = 269.5 kN                                                                                                              |        |       |        |     |
| $s_{\rm s} + c$              | = 50 + 0 = 50  mm                                                                                                                     |        |       |        |     |
| Therefor                     | re, for $s_s = 50$ mm and $c = 0$                                                                                                     |        |       |        |     |
| $F_{ m Rd}$                  | = 324  kN                                                                                                                             |        | Pa    | ge C-1 | 03  |
| $rac{F_{ m Ed}}{F_{ m Rd}}$ | $= \frac{269.5}{324} = 0.83 < 1.0$                                                                                                    |        |       |        |     |
|                              | re the resistance of the web to transverse forces is adequate                                                                         |        |       |        |     |
| Note                         |                                                                                                                                       |        |       |        |     |
|                              | e Book (SCI P363) does not include deflection values, so the SI<br>in verification must be carried out as in Section 2.8 of this exam |        |       |        |     |
|                              |                                                                                                                                       |        |       |        |     |
|                              |                                                                                                                                       |        |       |        |     |
|                              |                                                                                                                                       |        |       |        |     |
|                              |                                                                                                                                       |        |       |        |     |
|                              |                                                                                                                                       |        |       |        |     |
|                              |                                                                                                                                       |        |       |        |     |
|                              |                                                                                                                                       |        |       |        |     |
|                              |                                                                                                                                       |        |       |        |     |
|                              |                                                                                                                                       |        |       |        |     |
|                              |                                                                                                                                       |        |       |        |     |
|                              |                                                                                                                                       |        |       |        |     |
|                              |                                                                                                                                       |        |       |        |     |
|                              |                                                                                                                                       |        |       |        |     |
|                              |                                                                                                                                       |        |       |        |     |
|                              |                                                                                                                                       |        |       |        |     |
|                              |                                                                                                                                       |        |       |        |     |
|                              |                                                                                                                                       |        |       |        |     |
|                              |                                                                                                                                       |        |       |        |     |
|                              |                                                                                                                                       |        |       |        |     |

|                                                                                                                                                      |                                                  | Job No. | CDS164  |            | Sheet 1              | of 10                      | Rev                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------|---------|------------|----------------------|----------------------------|--------------------------------------------------------|
| Job Title Worked examples to the Eurocode<br>Subject Example 3 - Unrestrained beam w                                                                 |                                                  |         |         |            | es with U            | JK NA                      |                                                        |
|                                                                                                                                                      |                                                  |         |         |            | eam with end moments |                            |                                                        |
| Telephor                                                                                                                                             | Park, Ascot, Berks SL5 7QN<br>ne: (01344) 636525 |         |         | 1          |                      |                            |                                                        |
|                                                                                                                                                      | 344) 636570<br>JLATION SHEET                     | Client  | SCI     | Made by    | MEB                  | Date F                     | eb 2009                                                |
|                                                                                                                                                      |                                                  |         | 501     | Checked by | DGB                  | Date J                     | ul 2009                                                |
| 3                                                                                                                                                    | Unrestrained I<br>moments                        | beam    | with en | d bend     | ling                 | BS EN<br>2005, 1<br>Nation | nces are to<br>1993-1-1:<br>including its<br>al Annex, |
| 3.1                                                                                                                                                  | Scope                                            |         |         |            |                      | stated.                    | otherwise                                              |
| The beam shown in Figure 3.1 has moment resisting connections at its ends<br>and carries concentrated loads. The intermediate concentrated loads are |                                                  |         |         |            |                      |                            |                                                        |

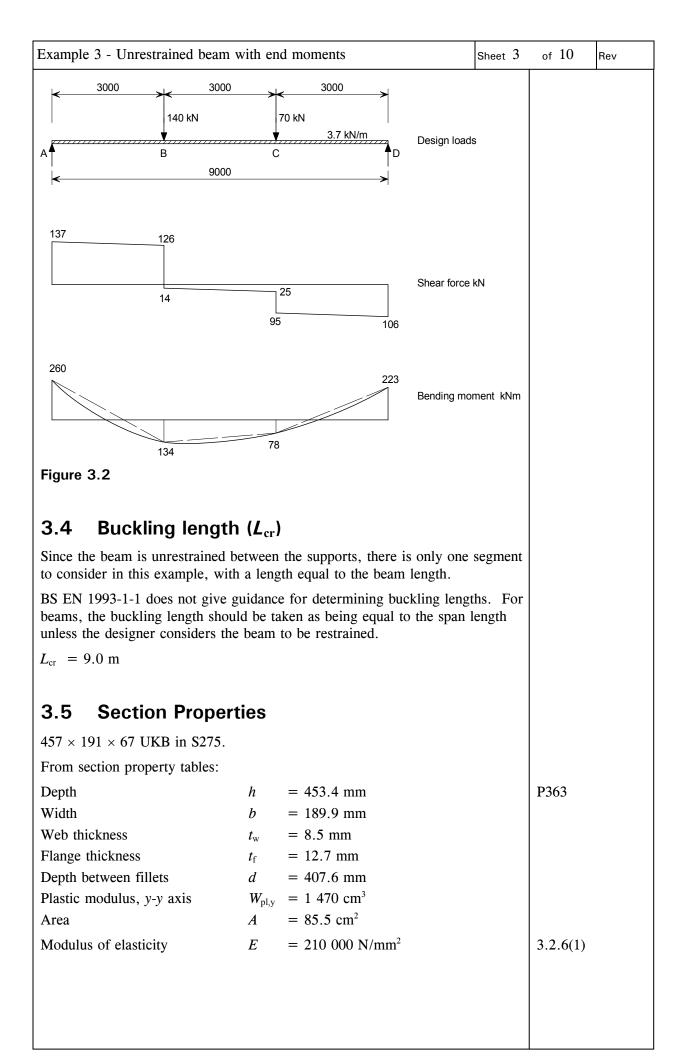
applied through the bottom flange. These concentrated loads do not provide restraint against lateral-torsional buckling. Design the beam in S275 steel.



#### Figure 3.1

The design aspects covered in this example are:

- Calculation of design values of actions for ULS
- Cross section classification
- Cross sectional resistance:
  - Shear buckling
  - Shear
  - Bending moment
- Lateral torsional buckling resistance.


Calculations for the verification of the vertical deflection of the beam under serviceability limit state loading are not given.

#### 3.2 Actions (loading)

#### 3.2.1 Permanent actions

| Uniformly distributed load (Self weight) | g = 3  kN/m           |
|------------------------------------------|-----------------------|
| Concentrated load 1                      | $G_1 = 40 \text{ kN}$ |
| Concentrated load 2                      | $G_2 = 20 \text{ kN}$ |

| Example 3 - Unrestrained beam with en-                                                                                        | d moments                                                           | Sheet 2       | of 10 Rev                |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------|--------------------------|
| 3.2.2 Variable actions                                                                                                        |                                                                     |               |                          |
| Concentrated load 1                                                                                                           | $Q_1 = 60 \text{ kN}$                                               |               |                          |
| Concentrated load 2                                                                                                           | $Q_2 = 30 \text{ kN}$                                               |               |                          |
| The variable actions considered here are independent of each other.                                                           | e not due to storage and are                                        | e not         |                          |
| 3.2.3 Partial factors for actions                                                                                             | 3                                                                   |               |                          |
| Partial factor for permanent actions                                                                                          | $\gamma_{\rm G} = 1.35$                                             |               | Table                    |
| Partial factor for variable actions                                                                                           | $\gamma_{\rm Q} = 1.50$                                             |               | NA.A1.2(B)               |
| Reduction factor                                                                                                              | $\xi = 0.925$                                                       |               |                          |
| Note: For this example, the combination<br>Section 3.2.4.                                                                     | n coefficient ( $\psi_0$ ) is not requ                              | uired, see    |                          |
| 3.2.4 Design values of combined State                                                                                         | ed actions for Ultimate                                             | e Limit       |                          |
| As the permanent actions are not greate<br>only Expression (6.10b) is considered h<br>combination of actions in Section 2.2.4 | ere. See discussion on choi                                         |               |                          |
| $\xi \gamma_{\rm Gj,sup} G_{j,\rm sup} + \gamma_{\rm Gj,inf} G_{j,\rm inf} + \gamma_{\rm Q,1} Q_1$                            | $+\gamma_{\mathrm{Q},\mathrm{i}}\psi_{0,\mathrm{i}}Q_{\mathrm{i}}$  |               | BS EN 1990<br>Eq (6.10b) |
| As the variable actions are not independ<br>accompanying variable actions. Therefore<br>here.                                 |                                                                     |               | 24 (0.100)               |
| UDL (self weight)                                                                                                             |                                                                     |               | EN 1990 Table            |
| $F_{1,d} = \xi \gamma_G g = (0.925 \times 1.35 \times 3) = 3$                                                                 | 5.7 kN/m                                                            |               | NA.A1.2(B)               |
| Concentrated load 1                                                                                                           |                                                                     |               |                          |
| $F_{2,d} = \xi \gamma_G G_1 + \gamma_Q Q_1 = (0.925 \times 1.35)$                                                             | $(5 \times 40) + (1.5 \times 60) = 140.0$                           | ) kN          |                          |
| Concentrated load 2                                                                                                           |                                                                     |               |                          |
| $F_{3,d} = \xi \gamma_G G_2 + \gamma_Q Q_2 = (0.925 \times 1.3)$                                                              | $5 \times 20 + (1.5 \times 30) = 70.0$                              | kN            |                          |
| 3.3 Design values of be forces                                                                                                | nding moments ar                                                    | nd shear      |                          |
| The design effects due to the above con                                                                                       | nbined actions are calculate                                        | d as follows: |                          |
| Design bending moment at A                                                                                                    | $M_{\rm A,Ed} = 260 \text{ kNm}$                                    |               |                          |
| Design bending moment at B                                                                                                    | $M_{\rm B,Ed} = 134 \text{ kNm}$ $M_{\rm B,Ed} = 78 \text{ kNm}$    |               |                          |
| Design bending moment at C<br>Design bending moment at D                                                                      | $M_{\rm C,Ed} = 78 \text{ kNm}$<br>$M_{\rm D,Ed} = 223 \text{ kNm}$ |               |                          |
| Maximum design shear force (at A)                                                                                             | $V_{\rm A,Ed} = 137 \text{ kN}$                                     |               |                          |
| Design shear force at D                                                                                                       | $V_{\rm A,Ed} = 137$ kN<br>$V_{\rm D,Ed} = 106$ kN                  |               |                          |
| The design bending moments and shear                                                                                          | forces are shown in Figure                                          | e 3.2         |                          |
|                                                                                                                               |                                                                     |               |                          |
|                                                                                                                               |                                                                     |               |                          |
|                                                                                                                               |                                                                     |               | 1                        |



| Example 3 - Unrestrained beam with end moments                                                                                                                                                                                                                    | Sheet 4 | of 10               | Rev    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|--------|
| For buildings that will be built in the UK, the nominal values of the yield strength $(f_y)$ and the ultimate strength $(f_u)$ for structural steel should be obtained from the product standard. Where a range is given, the lowes nominal value should be used. | those   | NA.2.4              |        |
| For S275 steel and $t \le 16 \text{ mm}$<br>Yield strength $f_y = R_{eH} = 275 \text{ N/mm}^2$                                                                                                                                                                    |         | BS EN 10<br>Table 7 | )025-2 |
| 3.6 Cross section classification                                                                                                                                                                                                                                  |         |                     |        |
| $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$                                                                                                                                                                                            |         | Table 5.2           |        |
| Outstand of compression flange                                                                                                                                                                                                                                    |         |                     |        |
| $c = \frac{b - t_{\rm w} - 2r}{2} = \frac{189.9 - 8.5 - (2 \times 10.2)}{2} = 80.50 \text{ mm}$                                                                                                                                                                   |         |                     |        |
| $\frac{c}{t_{\rm f}} = \frac{80.5}{12.7} = 6.34$                                                                                                                                                                                                                  |         |                     |        |
| The limiting value for Class 1 is $\frac{c}{t_{\rm f}} \le 9\varepsilon = 9 \times 0.92 = 8.28$                                                                                                                                                                   |         |                     |        |
| 6.34 < 8.28                                                                                                                                                                                                                                                       |         |                     |        |
| Therefore, the flange is Class 1 under compression.                                                                                                                                                                                                               |         |                     |        |
| Web subject to bending                                                                                                                                                                                                                                            |         |                     |        |
| c = d = 407.6  mm                                                                                                                                                                                                                                                 |         |                     |        |
| $\frac{c}{t_{\rm w}} = \frac{407.6}{8.5} = 47.95$                                                                                                                                                                                                                 |         |                     |        |
| The limiting value for Class 1 is $\frac{c}{t_{\rm f}} \le 72\varepsilon = 72 \times 0.92 = 66.24$                                                                                                                                                                |         |                     |        |
| 47.95 < 66.24                                                                                                                                                                                                                                                     |         |                     |        |
| Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                      |         |                     |        |
| Therefore, the cross section is Class 1 under bending.                                                                                                                                                                                                            |         |                     |        |
| 3.7 Partial factors for resistance                                                                                                                                                                                                                                |         |                     |        |
| $\gamma_{\rm M0} = 1.0$                                                                                                                                                                                                                                           |         | NA.2.15             |        |
| $\gamma_{\rm M1} = 1.0$                                                                                                                                                                                                                                           |         |                     |        |
|                                                                                                                                                                                                                                                                   |         |                     |        |
|                                                                                                                                                                                                                                                                   |         |                     |        |
|                                                                                                                                                                                                                                                                   |         |                     |        |
|                                                                                                                                                                                                                                                                   |         |                     |        |
|                                                                                                                                                                                                                                                                   |         |                     |        |
|                                                                                                                                                                                                                                                                   |         | 1                   |        |

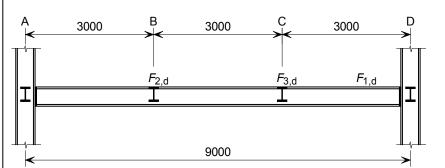
| Example 3 - Unrestrained beam with end moments                                                                                                                                         | Sheet 5            | of 10                 | Rev     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|---------|
| 3.8 Cross-sectional resistance                                                                                                                                                         |                    |                       |         |
| <b>3.8.1 Shear buckling</b><br>The shear buckling resistance for webs should be verified according to section 5 of BS EN 1993-1-5 if:                                                  |                    | 6.2.6(6)              |         |
| $\frac{h_{\rm w}}{t_{\rm w}} > 72 \frac{\varepsilon}{\eta}$                                                                                                                            |                    | Eq (6.23)             |         |
| $\eta = 1.0$<br>$h_{\rm w} = h - 2t_{\rm f} = 453.4 - (2 \times 12.7) = 428.00 \text{ mm}$                                                                                             |                    | BS EN 19<br>NA,2.4    | 993-1-5 |
| $\frac{h_{\rm w}}{t_{\rm w}} = \frac{428.0}{8.5} = 50.35$                                                                                                                              |                    |                       |         |
| $72\frac{\varepsilon}{\eta} = 72 \times \frac{0.92}{1.0} = 66.24$                                                                                                                      |                    |                       |         |
| 50.35 < 66.24                                                                                                                                                                          |                    |                       |         |
| Therefore the shear buckling resistance of the web does not need to be verified.                                                                                                       |                    |                       |         |
| 3.8.2 Shear resistance                                                                                                                                                                 |                    |                       |         |
| Verify that:                                                                                                                                                                           |                    | 6.2.6(1)              |         |
| $\frac{V_{\rm Ed}}{V_{\rm c,Rd}} \le 1.0$                                                                                                                                              |                    | Eq (6.17)             |         |
| $V_{c,Rd}$ is the design plastic shear resistance ( $V_{pl,Rd}$ ).                                                                                                                     |                    |                       |         |
| $V_{\rm pl.Rd} = \frac{A_{\rm v} (f_{\rm y} / \sqrt{3})}{\gamma_{\rm M0}}$                                                                                                             |                    |                       |         |
| $A_v$ is the shear area and is determined as follows for rolled I and H secti with the load applied parallel to the web.                                                               | ons                |                       |         |
| $A_{\rm v} = A - 2bt_{\rm f} + t_{\rm f} (t_{\rm w} + 2r)$ but not less than $\eta h_{\rm w} t_{\rm w}$                                                                                |                    |                       |         |
| $= 85.5 \times 10^{2} - (2 \times 189.9 \times 12.7) + 12.7 \times (8.5 + (2 \times 10.2)) = 4093.5$                                                                                   | 57 mm <sup>2</sup> |                       |         |
| $\eta h_{\rm w} t_{\rm w} = 1.0 \times 428 \times 8.5 = 3638.00 \ {\rm mm}^2$                                                                                                          |                    |                       |         |
| Therefore, $A_v = 4093.57 \text{ mm}^2$                                                                                                                                                |                    |                       |         |
| The design plastic shear resistance is:                                                                                                                                                |                    |                       |         |
| $V_{\rm c,Rd} = V_{\rm pl,Rd} = \frac{A_{\rm v} \left( f_{\rm y} / \sqrt{3} \right)}{\gamma_{\rm M0}} = \frac{4093.57 \times (275 / \sqrt{3})}{1.0} \times 10^{-3} = 650.0 \text{ kN}$ |                    | 6.2.6(2)<br>Eq (6.18) |         |
| Maximum design shear occurs at A, therefore the design shear is $V_{A,Ed,} = 137 \text{ kN}$                                                                                           |                    |                       |         |
|                                                                                                                                                                                        |                    |                       |         |

| Example 3 - Unrestrained beam with end moments                                                                                                                                                                                                    | Chart 6                       | of 10      | David |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------|-------|
| Example 5 - Onestraned beam with end moments                                                                                                                                                                                                      | Sheet 6                       | of IU      | Rev   |
| $\frac{V_{\rm A,Ed}}{V_{\rm c,Rd}} = \frac{137}{650} = 0.21 < 1.0$                                                                                                                                                                                |                               |            |       |
| Therefore the shear resistance of the section is adequate.                                                                                                                                                                                        |                               |            |       |
| 3.8.3 Resistance to bending                                                                                                                                                                                                                       |                               |            |       |
| Verify that:                                                                                                                                                                                                                                      |                               | 6.2.5(1)   |       |
| $\frac{M_{\rm Ed}}{M_{\rm c,Rd}} \le 1.0$                                                                                                                                                                                                         |                               | Eq (6.12)  |       |
| At the point of maximum bending (A), check if the presence of shear retter bending moment resistance of the section.                                                                                                                              | educes                        |            |       |
| $\frac{V_{\rm c,Rd}}{2} = \frac{650}{2} = 325.0 \text{ kN}$                                                                                                                                                                                       |                               |            |       |
| Shear force at maximum bending moment $V_{A,Ed} = 137$ kN<br>137 kN < 325.0 kN                                                                                                                                                                    |                               |            |       |
| Therefore <b>no reduction</b> in bending resistance due to shear is required.                                                                                                                                                                     |                               | 6.2.8(2)   |       |
| The design resistance for bending for Class 1 and 2 cross-sections is:                                                                                                                                                                            |                               | 6.2.5(2)   |       |
| $M_{\rm c,Rd} = M_{\rm pl,Rd} = \frac{W_{\rm pl,y} f_y}{\gamma_{\rm M0}} = \frac{1470 \times 10^3 \times 275}{1.0} \times 10^{-6} = 404 \text{ kNm}$                                                                                              |                               | Eq (6.13)  |       |
| $\frac{M_{\rm A,Ed}}{M_{\rm c,Rd}} = \frac{260}{404} = 0.64 < 1.0$                                                                                                                                                                                |                               | Eq (6.12)  |       |
| Therefore the bending resistance of the cross section is adequate.                                                                                                                                                                                |                               |            |       |
| 3.9 Buckling resistance of member in bending                                                                                                                                                                                                      | 9                             |            |       |
| If the lateral torsional buckling slenderness $(\overline{\lambda}_{LT})$ is less than or equal t the effects of lateral torsional buckling may be neglected, and only cross-sectional verifications apply.                                       | o $\overline{\lambda}_{LT,0}$ | 6.3.2.2(4) | )     |
| The value of $\overline{\lambda}_{LT,0}$ for rolled sections is given by the UK National Ann                                                                                                                                                      | ex as                         | NA.2.17    |       |
| $\lambda_{\rm LT,0} = 0.4$                                                                                                                                                                                                                        |                               |            |       |
| $\overline{\lambda}_{\rm LT} = \sqrt{\frac{W_{\rm y} f_{\rm y}}{M_{\rm cr}}}$                                                                                                                                                                     |                               | 6.3.2.2(1) | )     |
| $W_{\rm y} = W_{\rm pl,y}$ For class 1 or 2 cross sections.                                                                                                                                                                                       |                               |            |       |
| BS EN 1993-1-1 does not give a method for determining the elastic crit moment for lateral-torsional buckling $(M_{\rm cr})$ . Here the 'LTBeam' softwa (which can be downloaded from the CTICM website) has been used to determine $M_{\rm cr}$ . |                               |            |       |
|                                                                                                                                                                                                                                                   |                               |            |       |
|                                                                                                                                                                                                                                                   |                               |            |       |

| Example 3 - Unrestrained beam with end moments                                                          |                                                                                                                   |                                                    | Sheet 7   | of 10                   | Rev |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------|-------------------------|-----|
| When determining $M_{cr}$ the following end restraint conditions have been applied to the beam.         |                                                                                                                   |                                                    |           |                         |     |
| <i>LTBeam</i> symbol Definition Restraint applied (fixed/free)                                          |                                                                                                                   |                                                    |           |                         |     |
| v                                                                                                       | Lateral restraint                                                                                                 | Fixed                                              |           |                         |     |
| $\theta$                                                                                                | Torsional restraint                                                                                               | Fixed                                              |           |                         |     |
| <i>v</i> '                                                                                              | Flexural restraint                                                                                                | Free                                               |           |                         |     |
| $\theta$ '                                                                                              | Warping restraint                                                                                                 | Free                                               |           |                         |     |
| The value for the elastic critical moment obtained from ' <i>LTBeam</i> ' is:                           |                                                                                                                   |                                                    |           |                         |     |
| $M_{\rm cr} = 355.7  \rm kNm$                                                                           |                                                                                                                   |                                                    |           |                         |     |
| Therefore,                                                                                              |                                                                                                                   |                                                    |           |                         |     |
| $\overline{\lambda}_{LT} = \sqrt{\frac{1470 \times 10^3}{355.7 \times 10^3}}$                           | $\frac{\times 275}{10^6} = 1.07$                                                                                  |                                                    |           |                         |     |
| $1.07 > 0.4 (\overline{\lambda}_{LT,0})$                                                                |                                                                                                                   |                                                    |           |                         |     |
| Therefore the resistance to lateral-torsional buckling must be verified.                                |                                                                                                                   |                                                    |           |                         | )   |
| Verify that:                                                                                            |                                                                                                                   |                                                    |           |                         |     |
| $\frac{M_{\rm Ed}}{M_{\rm b,Rd}} \le 1.0$                                                               |                                                                                                                   |                                                    |           | 6.3.2.1(1)<br>Eq (6.54) | )   |
| The design buckling resistance moment $(M_{b,Rd})$ of a laterally unrestrained beam is determined from: |                                                                                                                   |                                                    |           | 6.3.2.1(3)<br>Eq (6.55) | )   |
| $M_{b.Rd} = \chi_{LT} W_y \frac{f_y}{\gamma_{M1}}$                                                      |                                                                                                                   |                                                    |           |                         |     |
| where:                                                                                                  |                                                                                                                   |                                                    |           |                         |     |
| $W_y = W_{pl,y}$ for Class 1 and 2 cross-sections                                                       |                                                                                                                   |                                                    |           |                         |     |
| $\chi_{\rm LT}$ is the reduction factor for lateral-torsional buckling.                                 |                                                                                                                   |                                                    |           |                         |     |
| For UKB sections, th sections may be used                                                               |                                                                                                                   | 2.3 for determining $\chi_{LT}$ for                | or rolled |                         |     |
| $\chi_{\rm LT} = \frac{1}{\varphi_{\rm LT} + \sqrt{\varphi_{\rm LT}}}$                                  | $\frac{1}{\int_{\Gamma}^{2} -\beta \overline{\lambda}_{LT}^{2}}  \text{but } \leq 1$                              | 1.0 and $\leq \frac{1}{\overline{\lambda}_{LT}^2}$ |           | 6.3.2.3(1)<br>Eq (6.57) | )   |
| where:                                                                                                  |                                                                                                                   |                                                    |           |                         |     |
| $\Phi_{\rm LT} = 0.5 (1 + \alpha_{\rm L})$                                                              | $L_{\rm T} \left( \overline{\lambda}_{\rm LT} - \overline{\lambda}_{\rm LT,0} \right) + \beta \overline{\lambda}$ | $\overline{\lambda}_{LT}^{2}$                      |           |                         |     |
| From the UK Nati                                                                                        | ional Annex, $\overline{\lambda}_{LT,0} = 0$                                                                      | 0.4 and $\beta = 0.75$                             |           | NA.2.17                 |     |
| $\frac{h}{b} = \frac{453.4}{189.9} = 2.39$                                                              |                                                                                                                   |                                                    |           |                         |     |
| 2 < 2.39 < 3.1, then                                                                                    | efore use buckling cur                                                                                            | ve 'c'                                             |           | NA.2.17                 |     |
| For buckling curve 'a                                                                                   | $\alpha_{\rm LT} = 0.49$                                                                                          |                                                    |           | NA.2.16<br>Table 6.5    | &   |

| Example 3 - Unrestrained beam with end moments                                                                                                                                  | Short Q | of 10                 | Boy        |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|------------|--|
|                                                                                                                                                                                 | Sheet 8 | UI TO                 | Rev        |  |
| $     \Phi_{\rm LT} = 0.5 \left( 1 + 0.49 \times \left( 1.07 - 0.4 \right) + \left( 0.75 \times 1.07^2 \right) \right) = 1.09 $                                                 |         |                       | 6.3.2.3(1) |  |
| $\chi_{\rm LT} = \frac{1}{1.09 + \sqrt{1.09^2 - (0.75 \times 1.07^2)}} = 0.60$                                                                                                  |         |                       |            |  |
| $\frac{1}{\overline{\lambda}_{\rm LT}^2} = \frac{1}{1.07^2} = 0.87$                                                                                                             |         |                       |            |  |
| 0.60 < 0.87 < 1.0                                                                                                                                                               |         |                       |            |  |
| Therefore,                                                                                                                                                                      |         |                       |            |  |
| $\chi_{\rm LT} = 0.60$                                                                                                                                                          |         |                       |            |  |
| To account for the shape of the bending moment distribution, $\chi_{LT}$ may modified by the use of a factor 'f'.                                                               | be      | 6.3.2.3(2)            | )          |  |
| $\chi_{\text{LT,mod}} = \frac{\chi_{\text{LT}}}{f} \text{ but } \chi_{\text{LT,mod}} \le 1.0$                                                                                   |         | Eq (6.58)             |            |  |
| where:                                                                                                                                                                          |         |                       |            |  |
| $f = 1 - 0.5 (1 - k_{\rm c}) \left[ 1 - 2 \left( \overline{\lambda}_{\rm LT} - 0.8 \right)^2 \right]$ but $f \le 1.0$                                                           |         | 6.3.2.3(2)            | )          |  |
| $k_{\rm c} = \frac{1}{\sqrt{C_1}}$                                                                                                                                              |         | NA.2.18               |            |  |
| $C_1$ may be obtained from either tabulated data given in NCCI,<br>Access Steel document SN003, or determined from:                                                             | such as | Access St<br>document |            |  |
| $C_1 = \frac{M_{\rm cr}(\text{actual bending moment diagram})}{M_{\rm cr}(\text{uniform bending moment diagram})}$                                                              |         |                       |            |  |
| As a value for $C_1$ for the bending moment diagram given in Figure 3.2 of this example is not given in the Access Steel document SN003 the value for $C_1$ will be calculated. |         | Access St<br>document |            |  |
| Applying a uniform bending moment to the beam the value of $M_{cr}$ deter<br>from the ' <i>LTBeam</i> ' software is:                                                            | mined   |                       |            |  |
| $M_{\rm cr} = 134.2  \rm kNm$                                                                                                                                                   |         |                       |            |  |
| $C_1 = \frac{355.7}{134.2} = 2.65$                                                                                                                                              |         |                       |            |  |
| $k_{\rm c} = \frac{1}{\sqrt{2.65}} = 0.61$                                                                                                                                      |         |                       |            |  |
| $f = 1 - 0.5 \times (1 - 0.61) \times [1 - 2 \times (1.07 - 0.8)^2] = 0.83$                                                                                                     |         | 6.3.2.3(2)            | )          |  |
| Therefore,                                                                                                                                                                      |         |                       |            |  |
| $\chi_{\rm LT,mod} = \frac{0.60}{0.83} = 0.72 < 1.0$                                                                                                                            |         | Eq (6.58)             |            |  |
| The design buckling resistance moment $(M_{b,Rd})$ of a laterally unrestrained is determined from:                                                                              | ed beam |                       |            |  |
|                                                                                                                                                                                 |         |                       |            |  |

| Example 3 - Unrestrained beam with end moments Sheet 9                                                                                                                                                                                                     | of 10 Rev                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| $M_{\rm b,Rd} = \chi_{\rm LT} W_{\rm y} \frac{f_{\rm y}}{\gamma_{\rm M1}}$                                                                                                                                                                                 | Eq (6.55)                              |
| where:                                                                                                                                                                                                                                                     |                                        |
| $\chi_{\rm LT} = \chi_{\rm LT,mod}$                                                                                                                                                                                                                        |                                        |
| Thus,                                                                                                                                                                                                                                                      |                                        |
| $M_{b,Rd} = 0.72 \times 1470 \times 10^3 \times \frac{275}{1.0} \times 10^{-6} = 291 \text{ kNm}$                                                                                                                                                          |                                        |
| $\frac{M_{\rm A,Ed}}{M_{\rm b,Rd}} = \frac{260}{291} = 0.89 < 1.0$                                                                                                                                                                                         | Sheet 2<br>6.3.2.1(1)<br>Eq (6.54)     |
| Therefore the design buckling resistance moment of the member is adequate.                                                                                                                                                                                 |                                        |
| 3.10 Vertical deflection at serviceability limit state                                                                                                                                                                                                     |                                        |
| The vertical deflections should be verified.                                                                                                                                                                                                               |                                        |
| 3.11 Blue Book Approach                                                                                                                                                                                                                                    | Page references in<br>Section 3.11 are |
| The design resistances may be obtained from SCI publication P363.                                                                                                                                                                                          | to P363 unless otherwise stated.       |
| Consider the $457 \times 191 \times 67$ UKB in S275                                                                                                                                                                                                        |                                        |
| <b>3.11.1 Design bending moments and shear forces</b><br>The design bending moments and shear forces are shown in Figure 3.2<br>Design bending moment (at A) $M_{A,Ed} = 260 \text{ kNm}$<br>Maximum design shear force (at A) $V_{A,Ed} = 137 \text{ kN}$ |                                        |
| 3.11.2 Cross section classification                                                                                                                                                                                                                        |                                        |
| Under bending the cross section is Class 1.                                                                                                                                                                                                                | Page C-67                              |
| 3.11.3 Cross sectional resistance                                                                                                                                                                                                                          |                                        |
| Shear resistance                                                                                                                                                                                                                                           |                                        |
| $V_{\rm c,Rd}$ = 650 kN                                                                                                                                                                                                                                    | Page C-104                             |
| $\frac{V_{\rm A,Ed}}{V_{\rm c,Rd}} = \frac{137}{650} = 0.21 < 1.0$                                                                                                                                                                                         |                                        |
| Therefore the shear resistance is adequate                                                                                                                                                                                                                 |                                        |
| Bending resistance                                                                                                                                                                                                                                         |                                        |
| $\frac{V_{\rm c,Rd}}{2} = \frac{650}{2} = 325 \text{ kN}$                                                                                                                                                                                                  |                                        |
| $V_{\rm A,Ed}$ = 137 kN < 325 kN                                                                                                                                                                                                                           |                                        |
| Therefore there is no reduction in the bending resistance.                                                                                                                                                                                                 |                                        |
| $M_{\rm c,y,Rd}$ = 405 kNm                                                                                                                                                                                                                                 | Page C-67                              |


| Example 3 - Unrestrained beam with end moments                       | Sheet 10 | of 10    | Rev |
|----------------------------------------------------------------------|----------|----------|-----|
| $\frac{M_{\rm A,Ed}}{M_{\rm c,y,Rd}} = \frac{260}{405} = 0.64 < 1.0$ | <u> </u> |          | 1   |
| Therefore the bending moment resistance is adequate                  |          |          |     |
| 3.11.4 Member buckling resistance                                    |          |          |     |
| From Section 3.8 of this example,                                    |          |          |     |
| $C_1 = 2.65$                                                         |          | Sheet 8  |     |
| From interpolation for $C_1 = 2.65$ and $L = 9.0$ m                  |          | Page C-6 | 7   |
| $M_{\rm b,Rd}$ = 290 kNm                                             |          |          |     |
| $\frac{M_{\rm A,Ed}}{M_{\rm b,Rd}} = \frac{260}{290} = 0.90 < 1.0$   |          |          |     |
| Therefore the buckling moment resistance is adequate                 |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |
|                                                                      |          |          |     |

|                                                                 | Job No.                                                                                    | CDS164                                      |      | Sheet 1 | of       | 11    | Rev  |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------|------|---------|----------|-------|------|
|                                                                 | Job Title                                                                                  | Worked examples to the Eurocodes with UK NA |      |         |          |       |      |
| Silwood Park, Ascot, Berks SL5 7QN<br>Telephone: (01344) 636525 | Subject Example 4 - Simply supported beam with latera restraint at load application points |                                             |      |         | eral     |       |      |
| Fax: (01344) 636570<br>CALCULATION SHEET                        |                                                                                            |                                             |      |         |          | Feb   | 2009 |
|                                                                 | SCI<br>Checked by DGB                                                                      |                                             |      |         | Date     | Jul 2 | 2009 |
| A Simply supported beam with lateral                            |                                                                                            |                                             | Refe | rence   | s are to |       |      |

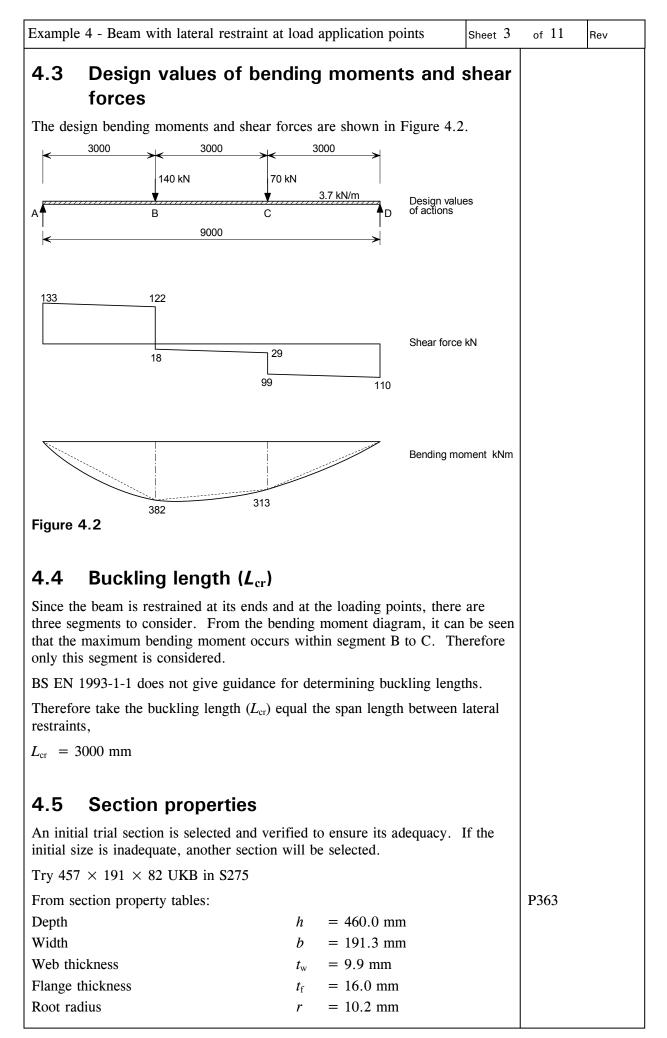
# 4 Simply supported beam with lateral restraint at load application points

## 4.1 Scope

The beam shown in Figure 4.1 is laterally restrained at the ends and at the points of load application only. For the loading shown, design the beam in S275 steel.



### Figure 4.1


The design aspects covered in this example are:

- Calculation of design values of actions for ULS
- Cross section classification
- Cross sectional resistance:
  - Shear buckling
  - Shear
  - Bending moment
- Lateral torsional buckling resistance.

Calculations for the verification of the vertical deflection of the beam under serviceability limit state loading are not given.

References are to BS EN 1993-1-1: 2005, including its National Annex, unless otherwise stated.

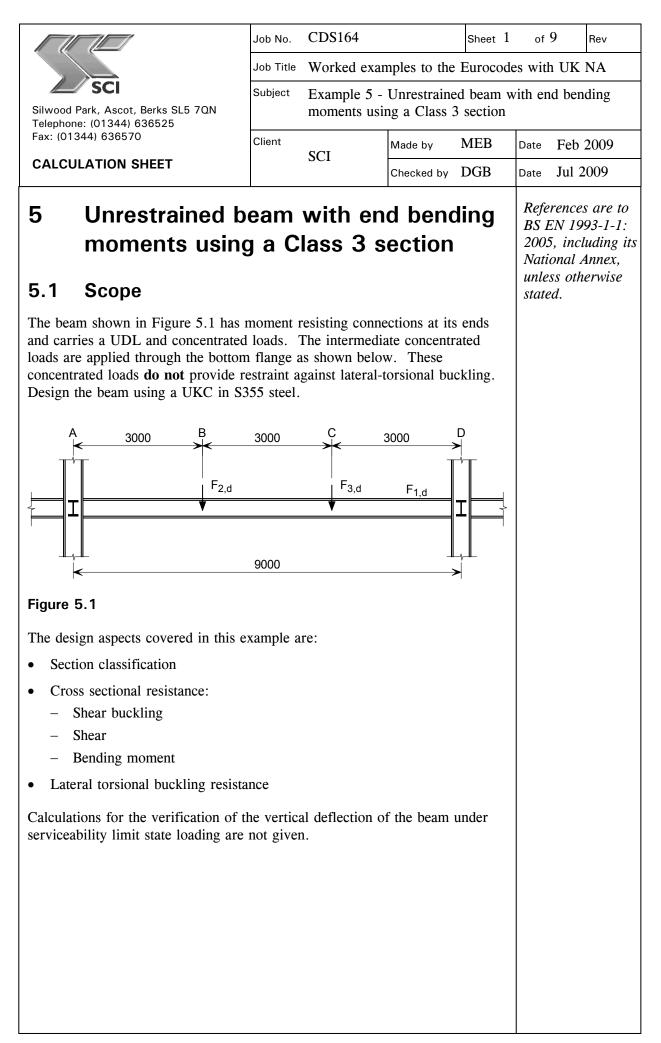
| Example 4 - Beam with lateral restraint at                                                                                                                                | application points                                       | Sheet 2 | of 11                 | Rev   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------|-----------------------|-------|
| 4.2 Actions (loading)                                                                                                                                                     |                                                          |         |                       |       |
| 4.2.1 Permanent actions                                                                                                                                                   |                                                          |         |                       |       |
| Uniformly Distributed Load (self weight)                                                                                                                                  | •                                                        |         |                       |       |
| Concentrated load 1                                                                                                                                                       | $G_1 = 40 \text{ kN}$                                    |         |                       |       |
| Concentrated load 2                                                                                                                                                       | $G_2 = 20 \text{ kN}$                                    |         |                       |       |
| 4.2.2 Variable actions                                                                                                                                                    |                                                          |         |                       |       |
| Concentrated load 1                                                                                                                                                       | $Q_1 = 60 \text{ kN}$                                    |         |                       |       |
| Concentrated load 2                                                                                                                                                       | $Q_2 = 30 \text{ kN}$                                    |         |                       |       |
| The variable actions considered here are n ndependent of each other.                                                                                                      | ot due to storage and are no                             | t       |                       |       |
| 4.2.3 Partial factors for actions                                                                                                                                         |                                                          |         |                       |       |
| Partial factor for permanent actions                                                                                                                                      | $\gamma_{\rm G} = 1.35$                                  |         | BS EN 19              |       |
| Partial factor for variable actions                                                                                                                                       | $\gamma_{\rm Q} = 1.50$                                  |         | Table NA              | .AI.2 |
| Reduction factor                                                                                                                                                          | $\xi = 0.925$                                            |         |                       |       |
| <i>Note: For this example the combination co</i><br><i>Section 4.2.4.</i>                                                                                                 | pefficient ( $\psi_0$ ) is not required                  | , see   |                       |       |
| 4.2.4 Design values of combined<br>State                                                                                                                                  | actions for Ultimate Li                                  | mit     |                       |       |
| As the permanent actions are not greater the conly Expression (6.10b) is considered here combination of actions in Section 2.2.4 of                                       | e. See discussion on choice                              |         |                       |       |
| $\xi \gamma_{\mathrm{G}j,\mathrm{sup}} G_{j,\mathrm{sup}} + \gamma_{\mathrm{G}j,\mathrm{inf}} G_{j,\mathrm{inf}} + \gamma_{\mathrm{Q},1} Q_1 + \gamma_{\mathrm{Q},1} Q_1$ | $\gamma_{\mathrm{Q},\mathrm{i}}\psi_{0,i} \mathcal{Q}_i$ |         | BS EN 19<br>Eq (6.10t |       |
| As the variable actions are not independen accompanying variable actions. Therefore nere.                                                                                 |                                                          | idered  |                       |       |
| UDL (self weight)                                                                                                                                                         |                                                          |         |                       |       |
| $F_{1,d} = \xi \gamma_G g = (0.925 \times 1.35 \times 3) = 3.7$                                                                                                           | kN/m                                                     |         |                       |       |
| Concentrated load 1                                                                                                                                                       |                                                          |         |                       |       |
| $F_{2,d} = \xi \gamma_G G_1 + \gamma_Q Q_1 = (0.925 \times 1.35)$                                                                                                         | $(40) + (1.5 \times 60) = 140.0$ k                       | N       |                       |       |
| Concentrated load 2                                                                                                                                                       |                                                          |         |                       |       |
| $F_{3,d} = \xi \gamma_G G_2 + \gamma_Q Q_2 = (0.925 \times 1.35)$                                                                                                         | $(20) + (15 \times 30) = 70.0 V$                         | N       |                       |       |
| $S_{3,a} = S_7 G S_2 + 7 Q g_2 = (0.723 \times 1.33)$                                                                                                                     | $-5 + (1.5 \times 50) = 70.0$ K                          |         |                       |       |
|                                                                                                                                                                           |                                                          |         |                       |       |
|                                                                                                                                                                           |                                                          |         |                       |       |
|                                                                                                                                                                           |                                                          |         |                       |       |
|                                                                                                                                                                           |                                                          |         |                       |       |
|                                                                                                                                                                           |                                                          |         |                       |       |
|                                                                                                                                                                           |                                                          |         |                       |       |
|                                                                                                                                                                           |                                                          |         |                       |       |

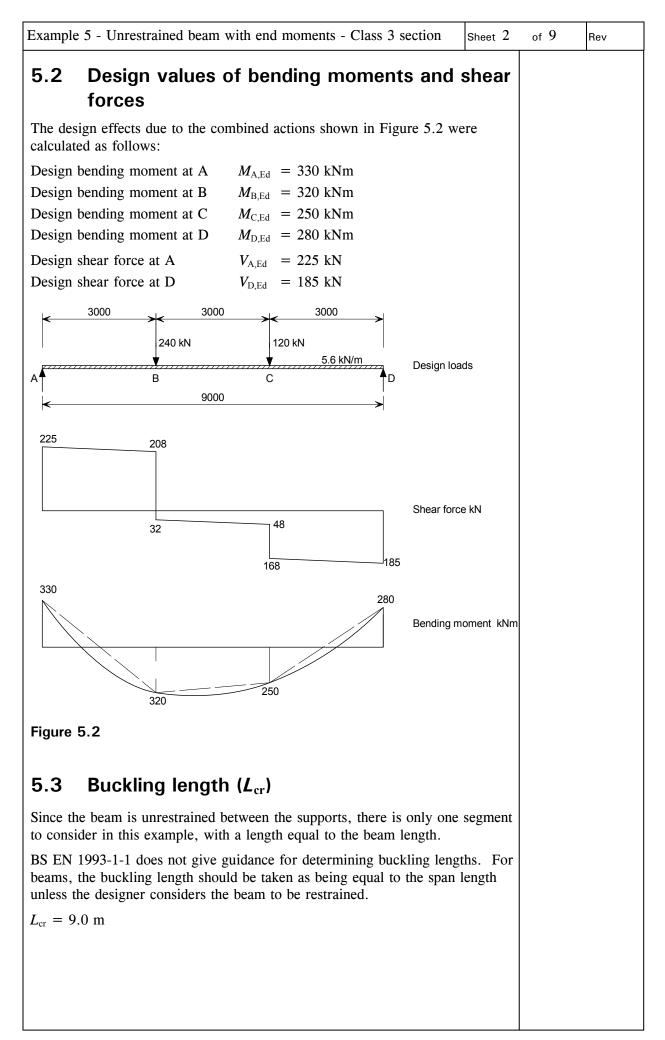


| Depth between fillets $d = 407.6 \text{ mm}$<br>Second moment of area y-y axis $I_r = 37\ 100 \text{ cm}^4$<br>Second moment of area z-z axis $I_r = 1\ 870\ \text{ cm}^3$<br>Warping constant $I_r = 0.922\ \text{dm}^3$<br>Radius of gyration y-y axis $I_r = 1.8\ \text{Cm}$<br>Radius of gyration y-y axis $I_r = 1.8\ \text{Cm}$<br>Radius of gyration y-y axis $I_r = 4.23\ \text{cm}$<br>Plastic modulus y-y axis $W_{pl,r} = 1.83\ \text{cm}^3$<br>Elastic modulus y-y axis $W_{pl,r} = 1.6\ 10\ \text{cm}^3$<br>Elastic modulus y-y axis $W_{sl,s} = 1.6\ 10\ \text{cm}^3$<br>Elastic modulus y-y axis $W_{sl,s} = 1.6\ 10\ \text{cm}^3$<br>Elastic modulus y-y axis $W_{sl,s} = 1.2\ 1000\ \text{N/mm}^2$<br>Area $A = 104\ \text{cm}^2$<br>Modulus of elasticity $E = 210\ 000\ \text{N/mm}^2$<br>NA.2.4<br>For buildings that will be built in the UK, the nominal values of the yield<br>strength $(f_r)$ and the ultimate strength $(f_r)$ for structural steel should be those<br>obtained from the product standard. Where a range is given, the lowest<br>nominal value should be used.<br>For S275 steel and $t \le 16\ \text{mm}$<br>Yield strength $f_r = R_{sl} = 275\ \text{N/mm}^2$<br><b>4.5.1</b> Cross section classification<br>$\varepsilon = \sqrt{\frac{225}{T_y}} = \sqrt{\frac{235}{275}} = 0.92$<br>Outstand of compression flange<br>$c = \frac{b - t_r - 2r}{2} = \frac{191.3 - 9.9 - (2 \times 10.2)}{2} = 80.50\ \text{mm}$<br>$\frac{c}{t_r} = \frac{80.5}{16.0} = 5.03$<br>The limiting value for Class 1 is $\frac{c}{t_f} \le 9\ \varepsilon = 9 \times 0.92 = 8.28$<br>5.03 < 8.28<br>Therefore, the flange in compression is Class 1<br>Web subject to bending<br>$c = d = 407.6\ \text{mm}$<br>$\frac{c}{t_w} = \frac{407.6}{9.9} = 41.17$<br>The limiting value for Class 1 is $\frac{c}{t_f} \le 72\ \varepsilon = 72 \times 0.92 = 66.24$<br>41.17 < 66.24<br>Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Example 4 - Beam with lateral restrain                                                | t at load application points                 | Sheet 4 | of 11     | Rev    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------|---------|-----------|--------|
| Second moment of area y-y axis $L_r = 37\ 100\ \text{cm}^4$<br>Second moment of area z-z axis $L_r = 1\ 870\ \text{cm}^4$<br>Warping constant $L_s = 0.922\ \text{dm}^3$<br>Radius of gyration y-y axis $L_r = 4.23\ \text{cm}$<br>Plastic modulus y-y axis $W_{ply} = 1\ 830\ \text{cm}^3$<br>Plastic modulus y-z axis $W_{ply} = 1\ 830\ \text{cm}^3$<br>Elastic modulus y-z axis $W_{ply} = 1\ 610\ \text{cm}^3$<br>Elastic modulus y-z axis $W_{ply} = 1\ 610\ \text{cm}^3$<br>Elastic modulus y-z axis $W_{ply} = 1\ 610\ \text{cm}^3$<br>Elastic modulus y-z axis $W_{ely} = 100\ \text{cm}^3$<br>Area $A = 104\ \text{cm}^2$<br>Modulus of elasticity $E = 210\ 000\ \text{N/mm}^2$<br>3.2.6(1)<br>For buildings that will be built in the UK, the nominal values of the yield<br>strength (f_r) and the ultimate strength (f_r) for structural steel should be those<br>obtained from the product standard. Where a range is given, the lowest<br>nominal value should be used.<br>For S275 steel and $t \le 16\ \text{mm}$<br>Yield strength $f_y = R_{\text{sf}} = 275\ \text{N/mm}^2$<br><b>4.5.1 Cross section classification</b><br>$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$<br>Outstand of compression flange<br>$c = \frac{b-t_w - 2T}{2} = \frac{191.3 - 9.9 - (2 \times 10.2)}{2} = 80.50\ \text{mm}$<br>$\frac{c}{t_t} = \frac{80.5}{16.0} = 5.03$<br>The limiting value for Class 1 is $\frac{c}{t_t} \le 9\ c = 9 \times 0.92 = 8.28$<br>5.03 < 8.28<br>Therefore, the flange in compression is Class 1<br>Web subject to bending<br>$c = d = 407.6\ \text{mm}$<br>$\frac{c}{t_w} = \frac{407.6}{9.9} = 41.17$<br>The limiting value for Class 1 is $\frac{c}{t_t} \le 72\ c = 72 \times 0.92 = 66.24$<br>41.17 < 66.24<br>Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Depth between fillets                                                                 | d = 407.6  mm                                |         |           |        |
| Second moment of area $z_2$ axis $l_x = 1870 \text{ cm}^4$<br>Warping constant $l_x = 0.922 \text{ dm}^3$<br>Radius of gyration $y_2$ axis $l_y = 18.8 \text{ cm}$<br>Radius of gyration $z_2$ axis $l_y = 4.23 \text{ cm}$<br>Plastic modulus $y_2$ varis $W_{plyz} = 1830 \text{ cm}^3$<br>Plastic modulus $y_2$ varis $W_{plyz} = 100 \text{ cm}^3$<br>Elastic modulus $z_2$ axis $W_{aly} = 160 \text{ cm}^3$<br>Area $A = 104 \text{ cm}^2$<br>Modulus of elasticity $E = 210 000 \text{ N/mm}^2$ 3.2.6(1)<br>For buildings that will be built in the UK, the nominal values of the yield<br>strength $(f_i)$ and the ultimate strength $(f_i)$ for structural steel should be those<br>obtained from the product standard. Where a range is given, the lowest<br>nominal value should be used.<br>For S275 steel and $t \le 16 \text{ nm}$<br>Yield strength $f_y = R_{\text{strl}} = 275 \text{ N/mm}^2$<br><b>4.5.1 Cross section classification</b><br>$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$<br>Outstand of compression flange<br>$c = \frac{b - t_w - 2r}{2} = \frac{191.3 - 9.9 - (2 \times 10.2)}{2} = 80.50 \text{ nm}$<br>$\frac{c}{t_r} = \frac{80.5}{16.0} = 5.03$<br>The limiting value for Class 1 is $\frac{c}{t_f} \le 9\varepsilon = 9 \times 0.92 = 8.28$<br>5.03 < 8.28<br>Therefore, the flange in compression is Class 1<br>Web subject to bending<br>c = d = 407.6  nm<br>$\frac{c}{t_w} = \frac{407.6}{9.9} = 41.17$<br>The limiting value for Class 1 is $\frac{c}{t_f} \le 72\varepsilon = 72 \times 0.92 = 66.24$<br>41.17 < 66.24<br>Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>^</u>                                                                              |                                              |         |           |        |
| Radius of gyration y-y axis $t_{i} = 18.8 \text{ cm}$<br>Radius of gyration z-z axis $t_{i} = 4.23 \text{ cm}$<br>Plastic modulus y-y axis $W_{ply} = 1.830 \text{ cm}^{3}$<br>Plastic modulus y-y axis $W_{ply} = 3.03 \text{ cm}^{3}$<br>Plastic modulus y-y axis $W_{ply} = 1.610 \text{ cm}^{3}$<br>Elastic modulus y-y axis $W_{elx} = 104 \text{ cm}^{3}$<br>Elastic modulus y-z axis $W_{elx} = 196 \text{ cm}^{3}$<br>Area $A = 104 \text{ cm}^{2}$<br>Modulus of elasticity $E = 210000\text{N/mm}^{2}$<br>S.2.6(1)<br>For buildings that will be built in the UK, the nominal values of the yield<br>strength (f <sub>2</sub> ) and the ultimate strength (f <sub>4</sub> ) for structural steel should be those<br>obtained from the product standard. Where a range is given, the lowest<br>nominal value should be used.<br>For S275 steel and $t \le 16$ mm<br>Yield strength $f_{r} = R_{elt} = 275 \text{ N/mm}^{2}$<br><b>4.5.1 Cross section classification</b><br>$\varepsilon = \sqrt{\frac{235}{f_{y}}} = \sqrt{\frac{235}{275}} = 0.92$<br>Outstand of compression flange<br>$c = \frac{b - t_{w} - 2r}{2} = \frac{191.3 - 9.9 - (2 \times 10.2)}{2} = 80.50 \text{ mm}$<br>$\frac{c}{t_{t}} = \frac{80.5}{16.0} = 5.03$<br>The limiting value for Class 1 is $\frac{c}{t_{t}} \le 9c = 9 \times 0.92 = 8.28$<br>5.03 < 8.28<br>Therefore, the flange in compression is Class 1<br>Web subject to bending<br>c = d = 407.6  mm<br>$\frac{c}{t_{w}} = \frac{407.6}{9.9} = 41.17$<br>The limiting value for Class 1 is $\frac{c}{t_{t}} \le 72c = 72 \times 0.92 = 66.24$<br>41.17 < 66.24<br>Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                       | 5                                            |         |           |        |
| Radius of gyration $z \cdot z$ axis $l_r = 4.23 \text{ cm}$<br>Plastic modulus $y - y$ axis $W_{pl_x} = 1.830 \text{ cm}^3$<br>Plastic modulus $y - y$ axis $W_{pl_x} = 1.830 \text{ cm}^3$<br>Plastic modulus $y - y$ axis $W_{al_x} = 1.610 \text{ cm}^3$<br>Elastic modulus $z \cdot z$ axis $W_{al_x} = 1.96 \text{ cm}^3$<br>Area $A = 104 \text{ cm}^2$<br>Modulus of elasticity $E = 210\ 000\ \text{N/mm}^2$ 3.2.6(1)<br>For buildings that will be built in the UK, the nominal values of the yield<br>strength $(f_y)$ and the ultimate strength $(f_y)$ for structural steel should be those<br>obtained from the product standard. Where a range is given, the lowest<br>nominal value should be used.<br>For S275 steel and $r \le 16\ \text{nm}$<br>Yield strength $f_y = R_{ett} = 275\ \text{N/mm}^2$<br><b>4.5.1 Cross section classification</b><br>$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$<br>Outstand of compression flange<br>$c = \frac{b - t_w - 2r}{2} = \frac{191.3 - 9.9 - (2 \times 10.2)}{2} = 80.50\ \text{mm}$<br>$\frac{c}{t_r} = \frac{80.5}{16.0} = 5.03$<br>The limiting value for Class 1 is $\frac{c}{t_f} \le 9\varepsilon = 9 \times 0.92 = 8.28$<br>5.03 < 8.28<br>Therefore, the flange in compression is Class 1<br>Web subject to bending<br>$c = d = 407.6\ \text{mm}$<br>$\frac{c}{t_w} = \frac{407.6}{9.9} = 41.17$<br>The limiting value for Class 1 is $\frac{c}{t_f} \le 72\varepsilon = 72 \times 0.92 = 66.24$<br>41.17 < 66.24<br>Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Warping constant                                                                      | $I_{\rm w} = 0.922 \ {\rm dm}^3$             |         |           |        |
| Plastic modulus y-y axis<br>Plastic modulus y-y axis<br>Plastic modulus z-z axis<br>Plastic modulus y-y axis<br>Elastic modulus y-y axis<br>Elastic modulus y-y axis<br>Elastic modulus y-y axis<br>Way, = 196 cm <sup>3</sup><br>Area<br>A = 104 cm <sup>2</sup><br>Modulus of elasticity<br>E = 210 000 N/mm <sup>2</sup><br>3.2.6(1)<br>For buildings that will be built in the UK, the nominal values of the yield<br>strength (f <sub>2</sub> ) and the ultimate strength (f <sub>2</sub> ) for structural steel should be those<br>obtained from the product standard. Where a range is given, the lowest<br>nominal value should be used.<br>For S275 steel and $t \le 16$ mm<br>Yield strength $f_y = R_{elt} = 275$ N/mm <sup>2</sup><br><b>4.5.1 Cross section classification</b><br>$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$<br>Outstand of compression flange<br>$c = \frac{b - t_w - 2r}{2} = \frac{191.3 - 9.9 - (2 \times 10.2)}{2} = 80.50$ mm<br>$\frac{c}{t_r} = \frac{80.5}{16.0} = 5.03$<br>The limiting value for Class 1 is $\frac{c}{t_r} \le 9c = 9 \times 0.92 = 8.28$<br>5.03 < 8.28<br>Therefore, the flange in compression is Class 1<br>Web subject to bending<br>c = d = 407.6 mm<br>$\frac{c}{t_w} = \frac{407.6}{9.9} = 41.17$<br>The limiting value for Class 1 is $\frac{c}{t_f} \le 72c = 72 \times 0.92 = 66.24$<br>41.17 < 66.24<br>Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Radius of gyration y-y axis                                                           | $i_y = 18.8 \text{ cm}$                      |         |           |        |
| Plastic modulus z-z axis<br>Elastic modulus y-y axis<br>Elastic modulus y-y axis<br>Elastic modulus z-z axis<br>Area<br>Area<br>Area<br>A = 104 cm <sup>2</sup><br>Modulus of elasticity<br>E = 210 000 N/mm <sup>2</sup><br>S.2.6(1)<br>NA.2.4<br>NA.2.4<br>NA.2.4<br>Second the product standard. Where a range is given, the lowest<br>obtained from the product standard. Where a range is given, the lowest<br>nominal value should be used.<br>For S275 steel and $t \le 16$ mm<br>Yield strength $f_y$ = $R_{eft}$ = 275 N/mm <sup>2</sup><br><b>4.5.1 Cross section classification</b><br>$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$<br>Outstand of compression flange<br>$c = \frac{b - t_w - 2r}{2} = \frac{191.3 - 9.9 - (2 \times 10.2)}{2} = 80.50 \text{ mm}$<br>$\frac{c}{t_r} = \frac{80.5}{16.0} = 5.03$<br>The limiting value for Class 1 is $\frac{c}{t_f} \le 9\varepsilon = 9 \times 0.92 = 8.28$<br>5.03 < 8.28<br>Therefore, the flange in compression is Class 1<br>Web subject to bending<br>c = d = 407.6  mm<br>$\frac{c}{t_w} = \frac{407.6}{9.9} = 41.17$<br>The limiting value for Class 1 is $\frac{c}{t_f} \le 72\varepsilon = 72 \times 0.92 = 66.24$<br>41.17 < 66.24<br>Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Radius of gyration z-z axis                                                           | $i_z = 4.23 \text{ cm}$                      |         |           |        |
| Elastic modulus y-y axis<br>Elastic modulus z-z axis<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>Area<br>A | Plastic modulus y-y axis                                                              | $W_{\rm pl,y} = 1 \ 830 \ {\rm cm}^3$        |         |           |        |
| Elastic modulus z-z axis<br>Area<br>Area<br>Area<br>Area<br>A = 104 cm <sup>3</sup><br>Modulus of elasticity<br>E = 210 000 N/mm <sup>2</sup><br>3.2.6(1)<br>NA.2.4<br>NA.2.4<br>NA.2.4<br>NA.2.4<br>Solution the product standard. Where a range is given, the lowest<br>nominal value should be used.<br>For S275 steel and $t \le 16$ mm<br>Yield strength $f_y = R_{ell} = 275$ N/mm <sup>2</sup><br><b>4.5.1 Cross section classification</b><br>$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$<br>Outstand of compression flange<br>$c = \frac{b - t_w - 2r}{2} = \frac{191.3 - 9.9 - (2 \times 10.2)}{2} = 80.50$ mm<br>$\frac{c}{t_r} = \frac{80.5}{16.0} = 5.03$<br>The limiting value for Class 1 is $\frac{c}{t_r} \le 9\varepsilon = 9 \times 0.92 = 8.28$<br>5.03 < 8.28<br>Therefore, the flange in compression is Class 1<br>Web subject to bending<br>c = d = 407.6 mm<br>$\frac{c}{t_w} = \frac{407.6}{9.9} = 41.17$<br>The limiting value for Class 1 is $\frac{c}{t_r} \le 72\varepsilon = 72 \times 0.92 = 66.24$<br>41.17 < 66.24<br>Therefore, the we bis Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Plastic modulus z-z axis                                                              | $W_{\rm pl,z} = 304 \ {\rm cm}^3$            |         |           |        |
| Area $A = 104 \text{ cm}^2$ Modulus of elasticity $E = 210\ 000\ \text{N/mm}^2$ 3.2.6(1)For buildings that will be built in the UK, the nominal values of the yield<br>strength $(f_0)$ and the ultimate strength $(f_0)$ for structural steel should be those<br>obtained from the product standard. Where a range is given, the lowest<br>nominal value should be used.NA.2.4For S275 steel and $t \le 16\ \text{mm}$<br>Yield strength $f_y = R_{ell} = 275\ \text{N/mm}^2$ BS EN 10025-2<br>Table 7 <b>4.5.1 Cross section classification</b><br>$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$ Table 5.2Outstand of compression flange<br>$c = \frac{b - t_w - 2r}{2} = \frac{191.3 - 9.9 - (2 \times 10.2)}{2} = 80.50\ \text{mm}$ Table 5.2 $\frac{c}{t_r} = \frac{80.5}{16.0} = 5.03$ The limiting value for Class 1 is $\frac{c}{t_f} \le 9\varepsilon = 9 \times 0.92 = 8.28$<br>5.03 < 8.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Elastic modulus y-y axis                                                              | $W_{\rm el,y} = 1 \ 610 \ {\rm cm}^3$        |         |           |        |
| Modulus of elasticity $E = 210\ 000\ \text{N/mm}^2$ 3.2.6(1)For buildings that will be built in the UK, the nominal values of the yield<br>strength $(f_0)$ off the ultimate strength $(f_0)$ for structural steel should be those<br>obtained from the product standard. Where a range is given, the lowest<br>nominal value should be used.NA.2.4For S275 steel and $t \le 16\ \text{mm}$<br>Yield strength $f_y = R_{cit} = 275\ \text{N/mm}^2$ BS EN 10025-2<br>Table 7 <b>4.5.1 Cross section classification</b><br>$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$ Table 5.2Outstand of compression flange<br>$c = \frac{b-t_w - 2r}{2} = \frac{191.3 - 9.9 - (2 \times 10.2)}{2} = 80.50\ \text{mm}$<br>$\frac{c}{t_f} = \frac{80.5}{16.0} = 5.03$ Table 5.2The limiting value for Class 1 is $\frac{c}{t_f} \le 9\varepsilon = 9 \times 0.92 = 8.28$<br>$5.03 < 8.28$ So mm<br>$\frac{c}{t_f} = \frac{407.6}{9.9} = 41.17$ Web subject to bending<br>$c = d = 407.6\ \text{mm}$<br>$\frac{c}{t_w} = \frac{407.6}{9.9} = 41.17$ The limiting value for Class 1 is $\frac{c}{t_f} \le 72\varepsilon = 72 \times 0.92 = 66.24$<br>$41.17 < 66.24$ The limiting value for Class 1 is $\frac{c}{t_f} \le 72\varepsilon = 72 \times 0.92 = 66.24$<br>H.1.17 < 66.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Elastic modulus z-z axis                                                              | $W_{\rm el,z} = 196 \ {\rm cm}^3$            |         |           |        |
| For buildings that will be built in the UK, the nominal values of the yield<br>strength ( $f_0$ ) and the ultimate strength ( $f_0$ ) for structural steel should be those<br>obtained from the product standard. Where a range is given, the lowest<br>nominal value should be used.<br>For S275 steel and $t \le 16$ mm<br>Yield strength $f_y = R_{efft} = 275$ N/mm <sup>2</sup><br><b>4.5.1 Cross section classification</b><br>$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$<br>Outstand of compression flange<br>$c = \frac{b - t_w - 2r}{2} = \frac{191.3 - 9.9 - (2 \times 10.2)}{2} = 80.50$ mm<br>$\frac{c}{t_t} = \frac{80.5}{16.0} = 5.03$<br>The limiting value for Class 1 is $\frac{c}{t_f} \le 9c = 9 \times 0.92 = 8.28$<br>5.03 < 8.28<br>Therefore, the flange in compression is Class 1<br>Web subject to bending<br>c = d = 407.6 mm<br>$\frac{c}{t_w} = \frac{407.6}{9.9} = 41.17$<br>The limiting value for Class 1 is $\frac{c}{t_f} \le 72c = 72 \times 0.92 = 66.24$<br>41.17 < 66.24<br>Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Area                                                                                  | $A = 104 \text{ cm}^2$                       |         |           |        |
| strength (f <sub>2</sub> ) and the ultimate strength (f <sub>2</sub> ) for structural steel should be those obtained from the product standard. Where a range is given, the lowest nominal value should be used.<br>For S275 steel and $t \le 16$ mm<br>Yield strength $f_y = R_{dH} = 275$ N/mm <sup>2</sup><br><b>4.5.1 Cross section classification</b><br>$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$<br>Outstand of compression flange<br>$c = \frac{b - t_w - 2r}{2} = \frac{191.3 - 9.9 - (2 \times 10.2)}{2} = 80.50$ mm<br>$\frac{c}{t_f} = \frac{80.5}{16.0} = 5.03$<br>The limiting value for Class 1 is $\frac{c}{t_f} \le 9\varepsilon = 9 \times 0.92 = 8.28$<br>5.03 < 8.28<br>Therefore, the flange in compression is Class 1<br>Web subject to bending<br>c = d = 407.6 mm<br>$\frac{c}{t_w} = \frac{407.6}{9.9} = 41.17$<br>The limiting value for Class 1 is $\frac{c}{t_f} \le 72\varepsilon = 72 \times 0.92 = 66.24$<br>41.17 < 66.24<br>Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Modulus of elasticity                                                                 | $E = 210 \ 000 \ \text{N/mm}^2$              |         | 3.2.6(1)  |        |
| Yield strength $f_y = R_{eff} = 275 \text{ N/mm}^2$ Table 7 <b>4.5.1 Cross section classification</b> $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$ Table 5.2Outstand of compression flange $c = \frac{b - t_w - 2r}{2} = \frac{191.3 - 9.9 - (2 \times 10.2)}{2} = 80.50 \text{ mm}$ Table 5.2 $\frac{c}{t_t} = \frac{80.5}{16.0} = 5.03$ The limiting value for Class 1 is $\frac{c}{t_f} \le 9\varepsilon = 9 \times 0.92 = 8.28$ 5.03 < 8.28Therefore, the flange in compression is Class 1Web subject to bending $c = d = 407.6 \text{ mm}$ $\frac{c}{t_w} = \frac{407.6}{9.9} = 41.17$ The limiting value for Class 1 is $\frac{c}{t_f} \le 72\varepsilon = 72 \times 0.92 = 66.24$ H.1.17 < 66.24Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | strength $(f_y)$ and the ultimate strength (<br>obtained from the product standard. W | $(f_{\rm u})$ for structural steel should be | those   | NA.2.4    |        |
| $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$ Table 5.2 Outstand of compression flange $c = \frac{b - t_w - 2r}{2} = \frac{191.3 - 9.9 - (2 \times 10.2)}{2} = 80.50 \text{ mm}$ $\frac{c}{t_t} = \frac{80.5}{16.0} = 5.03$ The limiting value for Class 1 is $\frac{c}{t_t} \le 9\varepsilon = 9 \times 0.92 = 8.28$ 5.03 < 8.28 Therefore, the flange in compression is Class 1 Web subject to bending $c = d = 407.6 \text{ mm}$ $\frac{c}{t_w} = \frac{407.6}{9.9} = 41.17$ The limiting value for Class 1 is $\frac{c}{t_t} \le 72\varepsilon = 72 \times 0.92 = 66.24$ 41.17 < 66.24 Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                       | 2                                            |         |           | 0025-2 |
| $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$ Table 5.2 Outstand of compression flange $c = \frac{b - t_w - 2r}{2} = \frac{191.3 - 9.9 - (2 \times 10.2)}{2} = 80.50 \text{ mm}$ $\frac{c}{t_t} = \frac{80.5}{16.0} = 5.03$ The limiting value for Class 1 is $\frac{c}{t_t} \le 9\varepsilon = 9 \times 0.92 = 8.28$ 5.03 < 8.28 Therefore, the flange in compression is Class 1 Web subject to bending $c = d = 407.6 \text{ mm}$ $\frac{c}{t_w} = \frac{407.6}{9.9} = 41.17$ The limiting value for Class 1 is $\frac{c}{t_t} \le 72\varepsilon = 72 \times 0.92 = 66.24$ 41.17 < 66.24 Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5.1 Cross section classificat                                                       | tion                                         |         |           |        |
| $c = \frac{b - t_w - 2r}{2} = \frac{191.3 - 9.9 - (2 \times 10.2)}{2} = 80.50 \text{ mm}$ $\frac{c}{t_f} = \frac{80.5}{16.0} = 5.03$ The limiting value for Class 1 is $\frac{c}{t_f} \le 9\varepsilon = 9 \times 0.92 = 8.28$ $5.03 < 8.28$ Therefore, the flange in compression is Class 1 Web subject to bending $c = d = 407.6 \text{ mm}$ $\frac{c}{t_w} = \frac{407.6}{9.9} = 41.17$ The limiting value for Class 1 is $\frac{c}{t_f} \le 72\varepsilon = 72 \times 0.92 = 66.24$ $41.17 < 66.24$ Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                              |         | Table 5.2 |        |
| $c = \frac{b - t_w - 2r}{2} = \frac{191.3 - 9.9 - (2 \times 10.2)}{2} = 80.50 \text{ mm}$ $\frac{c}{t_f} = \frac{80.5}{16.0} = 5.03$ The limiting value for Class 1 is $\frac{c}{t_f} \le 9\varepsilon = 9 \times 0.92 = 8.28$ $5.03 < 8.28$ Therefore, the flange in compression is Class 1 Web subject to bending $c = d = 407.6 \text{ mm}$ $\frac{c}{t_w} = \frac{407.6}{9.9} = 41.17$ The limiting value for Class 1 is $\frac{c}{t_f} \le 72\varepsilon = 72 \times 0.92 = 66.24$ $41.17 < 66.24$ Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Outstand of compression flange                                                        |                                              |         |           |        |
| $t_{\rm f} = 16.0$<br>The limiting value for Class 1 is $\frac{c}{t_{\rm f}} \le 9\varepsilon = 9 \times 0.92 = 8.28$<br>5.03 < 8.28<br>Therefore, the flange in compression is Class 1<br>Web subject to bending<br>c = d = 407.6  mm<br>$\frac{c}{t_{\rm w}} = \frac{407.6}{9.9} = 41.17$<br>The limiting value for Class 1 is $\frac{c}{t_{\rm f}} \le 72\varepsilon = 72 \times 0.92 = 66.24$<br>41.17 < 66.24<br>Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $c = \frac{b - t_{w} - 2r}{1 - t_{w} - 2r} = \frac{191.3 - 9.9 - (2)}{1 - (2)}$       | (10.2) = 80.50 mm                            |         |           |        |
| $t_{\rm f}$<br>5.03 < 8.28<br>Therefore, the flange in compression is Class 1<br>Web subject to bending<br>c = d = 407.6  mm<br>$\frac{c}{t_{\rm w}} = \frac{407.6}{9.9} = 41.17$<br>The limiting value for Class 1 is $\frac{c}{t_{\rm f}} \le 72\varepsilon = 72 \times 0.92 = 66.24$<br>41.17 < 66.24<br>Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                       |                                              |         |           |        |
| Therefore, the flange in compression is Class 1<br>Web subject to bending<br>c = d = 407.6  mm<br>$\frac{c}{t_w} = \frac{407.6}{9.9} = 41.17$<br>The limiting value for Class 1 is $\frac{c}{t_f} \le 72\varepsilon = 72 \times 0.92 = 66.24$<br>41.17 < 66.24<br>Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                       | $9\varepsilon = 9 \times 0.92 = 8.28$        |         |           |        |
| Web subject to bending<br>c = d = 407.6  mm<br>$\frac{c}{t_w} = \frac{407.6}{9.9} = 41.17$<br>The limiting value for Class 1 is $\frac{c}{t_f} \le 72\varepsilon = 72 \times 0.92 = 66.24$<br>41.17 < 66.24<br>Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.03 < 8.28                                                                           |                                              |         |           |        |
| $c = d = 407.6 \text{ mm}$ $\frac{c}{t_w} = \frac{407.6}{9.9} = 41.17$ The limiting value for Class 1 is $\frac{c}{t_f} \le 72\varepsilon = 72 \times 0.92 = 66.24$ $41.17 < 66.24$ Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Therefore, the flange in compression i                                                | s Class 1                                    |         |           |        |
| $\frac{c}{t_w} = \frac{407.6}{9.9} = 41.17$<br>The limiting value for Class 1 is $\frac{c}{t_f} \le 72\varepsilon = 72 \times 0.92 = 66.24$<br>41.17 < 66.24<br>Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Web subject to bending                                                                |                                              |         |           |        |
| $t_w$ 9.9<br>The limiting value for Class 1 is $\frac{c}{t_f} \le 72\varepsilon = 72 \times 0.92 = 66.24$<br>41.17 < 66.24<br>Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c = d = 407.6  mm                                                                     |                                              |         |           |        |
| 41.17 < 66.24<br>Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                       |                                              |         |           |        |
| Therefore, the web is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The limiting value for Class 1 is $\frac{c}{t_{\rm f}} \leq$                          | $72\varepsilon = 72 \times 0.92 = 66.24$     |         |           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41.17 < 66.24                                                                         |                                              |         |           |        |
| Therefore the section is Class 1 under bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Therefore, the web is Class 1 under be                                                | ending.                                      |         |           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Therefore the section is Class 1 under                                                | bending.                                     |         |           |        |

|                                                                                                                              |                  |                       | T       |
|------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|---------|
| Example 4 - Beam with lateral restraint at load application points                                                           | Sheet 5          | of 11                 | Rev     |
| 4.6 Partial factors for resistance<br>$\gamma_{M0} = 1.0$<br>$\gamma_{M1} = 1.0$                                             |                  | NA.2.15               |         |
| 4.7 Cross-sectional resistance                                                                                               |                  |                       |         |
| 4.7.1 Shear buckling resistance                                                                                              |                  |                       |         |
| The shear buckling resistance for webs should be verified according to Section 5 of BS EN 1993-1-5 if:                       |                  | 6.2.6(6)              |         |
| $\frac{h_{\rm w}}{t_{\rm w}} > 72\frac{\varepsilon}{\eta}$                                                                   |                  | Eq (6.23)             | 1       |
| $\eta = 1.0$<br>$h_{\rm w} = h - 2t_{\rm f} = 460.0 - (2 \times 16.0) = 428.0 \rm{mm}$                                       |                  | BS EN 19<br>NA.2.4    | 993-1-5 |
| $\frac{h_{\rm w}}{t_{\rm w}} = \frac{428.0}{9.9} = 43.23$                                                                    |                  |                       |         |
| $72\frac{\varepsilon}{\eta} = 72 \times \frac{0.92}{1.0} = 66.24$                                                            |                  |                       |         |
| 43.23 < 66.24                                                                                                                |                  |                       |         |
| Therefore the shear buckling resistance of the web does not need to be verified.                                             |                  |                       |         |
| 4.7.2 Shear resistance                                                                                                       |                  |                       |         |
| Verify that:                                                                                                                 |                  | 6.2.6(1)              |         |
| $\frac{V_{\rm Ed}}{V_{\rm c,Rd}} \le 1.0$                                                                                    |                  | Eq (6.17)             |         |
| For Class 1 and 2 cross sections                                                                                             |                  |                       |         |
| $V_{\rm c,Rd} = V_{\rm pl,Rd}$                                                                                               |                  |                       |         |
| $V_{\rm pl,Rd} = \frac{A_{\rm v} \left( f_{\rm y} / \sqrt{3} \right)}{\gamma_{\rm M0}}$                                      |                  | 6.2.6(2)<br>Eq (6.18) | 1       |
| $A_v$ is the shear area and is determined as follows for rolled I and H sectivity with the load applied parallel to the web. | tions            |                       |         |
| $A_{\rm v} = A - 2bt_{\rm f} + t_{\rm f} (t_{\rm w} + 2r)$ but not less than $\eta h_{\rm w} t_{\rm w}$                      |                  |                       |         |
| $= 104 \times 10^{2} - (2 \times 191.3 \times 16.0) + 16.0 \times (9.9 + (2 \times 10.2)) = 4763.$                           | $2 \text{ mm}^2$ |                       |         |
| $\eta h_{\rm w} t_{\rm w} = 1.0 \times 428 \times 9.9 = 4237.20 \ {\rm mm}^2$                                                |                  |                       |         |
| Therefore, $A_v = 4763.2 \text{ mm}^2$                                                                                       |                  |                       |         |
|                                                                                                                              |                  |                       |         |
|                                                                                                                              |                  |                       |         |
|                                                                                                                              |                  |                       |         |

| Example 4 - Beam with lateral restraint at load application points                                                                                                                                         | Sheet 6                        | of 11                 | Rev |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------|-----|
| The plastic design shear resistance is:                                                                                                                                                                    |                                |                       |     |
| $V_{\rm pl,Rd} = \frac{A_{\rm v} (f_{\rm y} / \sqrt{3})}{\gamma_{\rm M0}} = \frac{4763.2 \times (275 / \sqrt{3})}{1.0} \times 10^{-3} = 756 \text{ kN}$                                                    |                                | 6.2.6(2)<br>Eq (6.18) |     |
| Maximum design shear occurs at A<br>$V_{A,Ed} = 133 \text{ kN}$                                                                                                                                            |                                | Sheet 3               |     |
| $\frac{V_{\rm A,Ed}}{V_{\rm c,Rd}} = \frac{133}{756} = 0.18 < 1.0$                                                                                                                                         |                                |                       |     |
| Therefore the shear resistance of the section is adequate.                                                                                                                                                 |                                |                       |     |
| 4.7.3 Resistance to bending                                                                                                                                                                                |                                |                       |     |
| Verify that:                                                                                                                                                                                               |                                | 6.2.5(1)              |     |
| $\frac{M_{\rm Ed}}{M_{\rm c,Rd}} \le 1.0$                                                                                                                                                                  |                                | Eq (6.12)             |     |
| At the point of maximum bending moment (B) verify whether the shear will reduce the bending moment resistance of the section.                                                                              | force                          |                       |     |
| $\frac{V_{\rm c,Rd}}{2} = \frac{756}{2} = 378 \text{ kN}$                                                                                                                                                  |                                |                       |     |
| Shear force at maximum bending moment is $V_{B,Ed} = 122 \text{ kN}$                                                                                                                                       |                                | Sheet 3               |     |
| 122  kN < 378  kN                                                                                                                                                                                          |                                | 6.2.8(2)              |     |
| Therefore <b>no reduction</b> in bending resistance due to shear is required.                                                                                                                              |                                |                       |     |
| The design resistance for bending moment for Class 1 and 2 cross-secti                                                                                                                                     | ons is:                        | 6.2.5(2)              |     |
| $M_{\rm c,Rd} = M_{\rm pl,Rd} = \frac{W_{\rm pl,y}f_{\rm y}}{\gamma_{\rm M0}} = \frac{1830 \times 10^3 \times 275}{1.0} \times 10^{-6} = 503 \text{ kNm}$                                                  |                                | Eq (6.13)             |     |
| $\frac{M_{\rm B,Ed}}{M_{\rm c,Rd}} = \frac{382}{503} = 0.76 < 1.0$                                                                                                                                         |                                | Eq (6.12)             |     |
| Therefore the bending moment resistance is adequate.                                                                                                                                                       |                                |                       |     |
| 4.8 Buckling resistance of member in bending                                                                                                                                                               | g                              |                       |     |
| If the lateral torsional buckling slenderness $(\overline{\lambda}_{LT})$ is less than or equal to the effects of lateral torsional buckling may be neglected, and only cross-sectional resistances apply. | to $\overline{\lambda}_{LT,0}$ | 6.3.2.2(4)            | )   |
| The value of $\overline{\lambda}_{LT,0}$ for rolled sections is given by the UK National Ann $\overline{\lambda}_{LT,0} = 0.4$                                                                             | ex as                          | NA.2.17               |     |
| $\overline{\lambda}_{\rm LT} = \sqrt{\frac{W_{\rm y} f_{\rm y}}{M_{\rm cr}}}$                                                                                                                              |                                | 6.3.2.2(1)            | )   |
| $W_{\rm y} = W_{\rm pl,y}$ For class 1 or 2 cross sections.                                                                                                                                                |                                |                       |     |
|                                                                                                                                                                                                            |                                | 1                     |     |


| Example 4 - Beam with lateral restraint at load application points Sheet 7                                                                                                                                                                                                                         | of 11                 | Rev |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----|
| BS EN 1993-1-1 does not give a method for determining the elastic critical moment for lateral-torsional buckling $(M_{\rm cr})$ . Here a method presented in Access Steel document SN002 is used to determine a value for $\overline{\lambda}_{\rm LT}$ without having to calculate $M_{\rm cr}$ . | Access St<br>document |     |
| Consider section $\mathbf{B} - \mathbf{C}$ of the beam.                                                                                                                                                                                                                                            |                       |     |
| 3 m                                                                                                                                                                                                                                                                                                |                       |     |
| M <sub>C,Ed</sub>                                                                                                                                                                                                                                                                                  |                       |     |
| M <sub>B,Ed</sub>                                                                                                                                                                                                                                                                                  |                       |     |
| Figure 4.3                                                                                                                                                                                                                                                                                         |                       |     |
| $\overline{\lambda}_{\rm LT} = \frac{1}{\sqrt{C_1}} U V \overline{\lambda}_z \sqrt{\beta_{\rm w}}$                                                                                                                                                                                                 | Access St<br>SN002    | eel |
| where:                                                                                                                                                                                                                                                                                             |                       |     |
| $U = \sqrt{\frac{W_{\rm pl,y}g}{A}} \sqrt{\frac{I_z}{I_w}}$                                                                                                                                                                                                                                        |                       |     |
| $g = \sqrt{1 - \frac{I_z}{I_y}} = \sqrt{1 - \frac{1870}{37100}} = 0.97$                                                                                                                                                                                                                            |                       |     |
| $U = \sqrt{\left(\frac{1830 \times 10^{3} \times 0.97}{104 \times 10^{2}}\right) \times \sqrt{\frac{1870 \times 10^{4}}{0.922 \times 10^{12}}} = 0.88$                                                                                                                                             |                       |     |
| $V = \frac{1}{\sqrt[4]{1 + \frac{1}{20} \left(\frac{\lambda_z}{h/t_f}\right)^2}}$ (For doubly symmetric sections)                                                                                                                                                                                  |                       |     |
| $\lambda_z = \frac{kL}{i_z}$                                                                                                                                                                                                                                                                       |                       |     |
| k is the effective length parameter and should be taken as 1.0 unless it can be demonstrated otherwise. Therefore,                                                                                                                                                                                 |                       |     |
| $\lambda_z = \frac{L}{i_z} = \frac{3000}{42.3} = 70.92$                                                                                                                                                                                                                                            |                       |     |
| $V = \frac{1}{\sqrt[4]{1 + \frac{1}{20} \left(\frac{70.92}{460/16}\right)^2}} = 0.94$                                                                                                                                                                                                              |                       |     |
|                                                                                                                                                                                                                                                                                                    |                       |     |


| Example 4 - Beam with lateral restraint at load application points                                 | heet 8 | of 11                   | Rev    |
|----------------------------------------------------------------------------------------------------|--------|-------------------------|--------|
|                                                                                                    |        | 01 11                   |        |
| $\beta_{\rm w} = \frac{W_{\rm y}}{W_{\rm pl,y}}$                                                   |        |                         |        |
| W <sub>pl,y</sub>                                                                                  |        |                         |        |
| For Class 1 and 2 sections $W_y = W_{pl,y}$ , therefore,                                           |        |                         |        |
| $\beta_{\rm w} = 1.0$                                                                              |        |                         |        |
| $\overline{\lambda}_{z} = \frac{\lambda_{z}}{\lambda_{1}}$                                         |        |                         |        |
| $\lambda_1 = \pi \sqrt{\frac{E}{f_y}} = \pi \sqrt{\frac{210000}{275}} = 86.8$                      |        |                         |        |
| $\overline{\lambda}_{z} = \frac{70.92}{86.8} = 0.82$                                               |        |                         |        |
| $\frac{1}{\sqrt{C_1}}$ is a factor that accounts for the shape of the bending moment diag          | ram    |                         |        |
| $\psi = \frac{M_{\rm C,Ed}}{M_{\rm B,Ed}} = \frac{313}{382} = 0.82$                                |        |                         |        |
| For the bending moment shape shown in Figure 4.3 and $\psi = 0.82$ ,                               |        | Access St               |        |
| $\frac{1}{\sqrt{C_1}} = 0.92$                                                                      |        | document<br>Table 2.1   | SIN002 |
| $\overline{\lambda}_{\rm LT} = \frac{1}{\sqrt{C_1}} U V \overline{\lambda}_z \sqrt{\beta_{\rm w}}$ |        |                         |        |
| $\overline{\lambda}_{LT} = 0.92 \times 0.88 \times 0.94 \times 0.82 \times \sqrt{1.0} = 0.62$      |        |                         |        |
| $0.62 > 0.4 \left( \overline{\lambda}_{LT,0} \right)$                                              |        | 6.3.2.2(4)              | )      |
| Therefore, the resistance to lateral torsional buckling should be verified.                        |        |                         |        |
| Verify that:                                                                                       |        |                         |        |
| $\frac{M_{\rm Ed}}{M_{\rm b,Rd}} \le 1.0$                                                          |        | 6.3.2.1(1)<br>Eq (6.54) |        |
| The design buckling resistance moment $(M_{b,Rd})$ of a laterally unrestrained is determined from: | l beam | 6.3.2.1(3)<br>Eq (6.55) |        |
| $M_{\rm b,Rd} = \chi_{\rm LT} W_{\rm y} \frac{f_{\rm y}}{\gamma_{\rm M1}}$                         |        |                         |        |
| where:                                                                                             |        |                         |        |
| $W_y = W_{pl,y}$ for Class 1 and 2 cross-sections                                                  |        |                         |        |
| $\chi_{\rm LT}$ is the reduction factor for lateral-torsional buckling.                            |        |                         |        |
|                                                                                                    |        |                         |        |
|                                                                                                    |        |                         |        |
|                                                                                                    |        |                         |        |

| Example 4 - Beam with lateral restraint at load application points Sheet 9                                                                                                          | of 11 Rev               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| For UKB sections, the method given in 6.3.2.3 for determining $\chi_{LT}$ for rolled sections may be used. Therefore,                                                               |                         |
| $\chi_{\rm LT} = \frac{1}{\Phi_{\rm LT} + \sqrt{\Phi_{\rm LT}^2 - \beta \overline{\lambda}_{\rm LT}^2}}$ but $\leq 1.0$ and $\leq \frac{1}{\overline{\lambda}_{\rm LT}^2}$          | 6.3.2.3(1)<br>Eq (6.57) |
| where:<br>$\Phi_{\rm LT} = 0.5 \left( 1 + \alpha_{\rm LT} \left( \overline{\lambda}_{\rm LT} - \overline{\lambda}_{\rm LT,0} \right) + \beta \overline{\lambda}_{\rm LT}^2 \right)$ |                         |
| From the UK National Annex $\overline{\lambda}_{LT,0} = 0.4$ and $\beta = 0.75$                                                                                                     | NA.2.17                 |
| The appropriate buckling curve depends on $h/b$ :                                                                                                                                   |                         |
| $\frac{h}{b} = \frac{460.0}{191.3} = 2.40$                                                                                                                                          |                         |
| 2 < 2.40 < 3.1, therefore use buckling curve 'c'                                                                                                                                    | NA.2.17                 |
| For buckling curve 'c', $\alpha_{LT} = 0.49$                                                                                                                                        | NA.2.16 &<br>Table 6.3  |
| $\Phi_{\rm LT} = 0.5 \times (1 + 0.49 \times (0.62 - 0.4) + (0.75 \times 0.62^2)) = 0.70$                                                                                           | 6.3.2.3(1)              |
| $\chi_{\rm LT} = \frac{1}{0.7 + \sqrt{0.7^2 - (0.75 \times 0.62^2)}} = 0.87$                                                                                                        |                         |
| $\frac{1}{\overline{\lambda}_{LT}^2} = \frac{1}{0.62^2} = 2.60$                                                                                                                     |                         |
| 0.87 < 1.0 < 2.60                                                                                                                                                                   |                         |
| Therefore,                                                                                                                                                                          |                         |
| $\chi_{\rm LT} = 0.87$                                                                                                                                                              |                         |
| To account of the shape of the bending moment distribution, $\chi_{LT}$ may be modified as follows:                                                                                 | 6.3.2.3(2)<br>Eq (6.58) |
| $\chi_{\rm LT,mod} = \frac{\chi_{\rm LT}}{f}$ but $\chi_{\rm LT,mod} \le 1.0$                                                                                                       |                         |
| $f = 1 - 0.5 (1 - k_c) \left[ 1 - 2 \left( \overline{\lambda}_{LT} - 0.8 \right)^2 \right]$ but $f \le 1.0$                                                                         | 6.3.2.3(2)              |
| $k_{\rm c} = \frac{1}{\sqrt{C_1}}$                                                                                                                                                  | NA.2.18                 |
| Therefore,                                                                                                                                                                          |                         |
| $k_{\rm c} = 0.92$                                                                                                                                                                  | Sheet 8                 |
| $f = 1 - 0.5 \times (1 - 0.92) \times [1 - 2 \times (0.62 - 0.8)^2] = 0.96$                                                                                                         | 6.3.2.3(2)              |
| Therefore,                                                                                                                                                                          |                         |
| $\chi_{\rm LT,mod} = \frac{0.88}{0.96} = 0.92$                                                                                                                                      | Eq (6.58)               |
|                                                                                                                                                                                     |                         |
|                                                                                                                                                                                     |                         |

|                                                                                                                                                  |                                                                  | 1        |                        | 1         |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------|------------------------|-----------|
| Example 4 - Beam with lateral restraint at                                                                                                       | load application points                                          | Sheet 10 | of 11                  | Rev       |
| The design buckling resistance moment ( <i>M</i> is determined from:                                                                             | $(\mathbf{f}_{b,Rd})$ of a laterally unrestrained                | ed beam  |                        |           |
| $M_{\mathrm{b,Rd}} = \chi_{\mathrm{LT}} W_{\mathrm{y}} \frac{f_{\mathrm{y}}}{\gamma_{\mathrm{M0}}}$                                              |                                                                  |          | Eq (6.55)              | 1         |
| where:                                                                                                                                           |                                                                  |          |                        |           |
| $\chi_{\rm LT} = \chi_{\rm LT,mod}$                                                                                                              |                                                                  |          |                        |           |
| For this beam:                                                                                                                                   |                                                                  |          |                        |           |
| $M_{b,Rd} = 0.92 \times 1830 \times 10^3 \times \frac{275}{1.0} \times 10^{-6}$                                                                  | = 463 kNm                                                        |          |                        |           |
| $\frac{M_{\rm B,Ed}}{M_{\rm b,Rd}} = \frac{382}{463} = 0.83 < 1.0$                                                                               |                                                                  |          | 6.3.2.1(1<br>Eq (6.54) |           |
| Therefore the design buckling resistance o                                                                                                       | f the member is adequate.                                        |          |                        |           |
| 4.8.1 Resistance of the web to the                                                                                                               | ransverse forces                                                 |          |                        |           |
| There is no need to verify the resistance o<br>example, because the secondary beams are<br>primary beams and flexible end plates are<br>columns. | f the web to transverse forces<br>e connected into the webs of t | the      |                        |           |
| 4.9 Blue Book Approach                                                                                                                           |                                                                  |          | Daga nof               |           |
| The design resistances may be obtained fro                                                                                                       | om SCI publication P363.                                         |          | Page refe<br>Section 4 | .9 are to |
| Consider the 457 $\times$ 191 $\times$ 82 UKB in S2                                                                                              | 75                                                               |          | P363 unlo otherwise    |           |
| 4.9.1 Design bending moments a                                                                                                                   | nd shear forces                                                  |          |                        |           |
| The design bending moment and shear for                                                                                                          |                                                                  |          |                        |           |
| Maximum shear                                                                                                                                    | $V_{\rm A,Ed}$ = 133 kN                                          |          |                        |           |
| Shear at maximum bending moment                                                                                                                  | $V_{\rm B,Ed}$ = 122 kN                                          |          |                        |           |
| Maximum bending moment                                                                                                                           | $M_{\rm Ed}$ = 382 kNm                                           |          |                        |           |
| 4.9.2 Cross section classification                                                                                                               | I                                                                |          |                        |           |
| Under bending the section in S275 is Class                                                                                                       | s 1.                                                             |          | Page C-6               | 7         |
| 4.9.3 Cross sectional resistance                                                                                                                 |                                                                  |          |                        |           |
| Shear resistance                                                                                                                                 |                                                                  |          |                        |           |
| $V_{\rm c,Rd}$ = 756 kN                                                                                                                          |                                                                  |          | Page C-1               | 04        |
| $\frac{V_{\rm Ed}}{V_{\rm c,Rd}} = \frac{133}{756} = 0.18 < 1.0$                                                                                 |                                                                  |          |                        |           |
| Therefore the shear resistance is adequate                                                                                                       |                                                                  |          |                        |           |
|                                                                                                                                                  |                                                                  |          |                        |           |
|                                                                                                                                                  |                                                                  |          |                        |           |
|                                                                                                                                                  |                                                                  |          |                        |           |

| Bending resistance                                                 |           |
|--------------------------------------------------------------------|-----------|
|                                                                    |           |
| $\frac{V_{\rm c,Rd}}{2} = \frac{756}{2} = 378 \text{ kN}$          |           |
| $V_{\rm B,Ed}$ = 122 kN < 378 kN                                   |           |
| Therefore there is no reduction in the bending resistance.         |           |
| $M_{\rm c,y,Rd}$ = 504 kNm                                         | Page C-67 |
| $\frac{M_{\rm Ed}}{M_{\rm c,y,Rd}} = \frac{382}{504} = 0.76 < 1.0$ |           |
| Therefore the bending moment resistance is adequate                |           |
| 4.9.4 Member buckling resistance                                   |           |
| $L_{\rm cr}$ = 3.0 m                                               | Sheet 3   |
| Consider span B – C.                                               |           |
| < <u>3 m</u>                                                       |           |
| M <sub>B,Ed</sub>                                                  |           |
| From Section 4.7 of this example                                   |           |
| $\frac{1}{\sqrt{C_1}} = 0.92$                                      | Sheet 8   |
| Therefore,                                                         |           |
| $C_1 = \left(\frac{1}{0.92}\right)^2 = 1.18$                       |           |
| From interpolation for $C_1 = 1.18$ and $L = 3$ m                  | Page C-67 |
| $M_{\rm b,Rd}$ = 449 kNm                                           |           |
| $\frac{M_{\rm Ed}}{M_{\rm b,Rd}} = \frac{382}{449} = 0.85 < 1.0$   |           |
| Therefore the buckling resistance is adequate                      |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |





| Example 5 - Unrestrained beam wit                                            |                                                                                                                           | Sheet 3 o | f 9 Rev                |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------|------------------------|
| 5.4 Section propertie                                                        | S                                                                                                                         |           |                        |
| $305 \times 305 \times 97$ UKC in S355 stee<br>From section property tables: | 1                                                                                                                         |           |                        |
| Depth                                                                        | h = 307.9  mm                                                                                                             | P3        | 363                    |
| Width                                                                        | b = 305.3  mm                                                                                                             |           |                        |
| Web thickness                                                                | $t_{\rm w}$ = 9.9 mm                                                                                                      |           |                        |
| Flange thickness                                                             | $t_{\rm f}$ = 15.4 mm                                                                                                     |           |                        |
| Root radius                                                                  | r = 15.2  mm                                                                                                              |           |                        |
| Depth between fillets                                                        | d = 246.7  mm                                                                                                             |           |                        |
| Elastic modulus, y-y axis                                                    | $W_{\rm el,y} = 1 450 \ \rm cm^3$                                                                                         |           |                        |
| Area                                                                         | $A = 123 \text{ cm}^2$                                                                                                    |           |                        |
| Modulus of elasticity                                                        | $E = 210\ 000\ \text{N/mm}^2$                                                                                             | 3.        | 2.6(1)                 |
| strength $(f_y)$ and the ultimate streng                                     | the UK, the nominal values of the yie<br>of $(f_u)$ for structural steel should be<br>. Where a range is given, the lowes | those     | A.2.4                  |
| For S355 steel and $t \le 16$ mm<br>Yield strength $f_y = R_{eH} = 355$ N    | /mm <sup>2</sup>                                                                                                          |           | S EN 10025-2<br>able 7 |
| 5.4.1 Cross section classifi                                                 | cation                                                                                                                    |           |                        |
| $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{355}} = 0.81$       |                                                                                                                           | Ta        | able 5.2               |
| Outstand of compression flange                                               |                                                                                                                           |           |                        |
| $c = \frac{b - t_{w} - 2r}{2} = \frac{305.3 - 9}{2}$                         | $\frac{.9 - (2 \times 15.2)}{2} = 132.5 \text{ mm}$                                                                       |           |                        |
| $\frac{c}{t_{\rm f}} = \frac{132.5}{15.4} = 8.6$                             |                                                                                                                           |           |                        |
| The limiting value for Class 2 is $\frac{d}{t}$                              |                                                                                                                           |           |                        |
| The limiting value for Class 3 is $\frac{d}{t}$                              |                                                                                                                           |           |                        |
| 8.1 < 8.6 < 11.3                                                             |                                                                                                                           |           |                        |
| Therefore, the flange in compression                                         | on is Class 3                                                                                                             |           |                        |
| Web subject to bending                                                       |                                                                                                                           |           |                        |
| c = d = 246.7  mm                                                            |                                                                                                                           |           |                        |
| $\frac{c}{t_{\rm w}} = \frac{246.7}{9.9}$ 24.92                              |                                                                                                                           |           |                        |
| The limiting value for Class 1 is $\frac{c}{t}$                              | $- \le 72\varepsilon = 72 \times 0.81 = 58.32$                                                                            |           |                        |

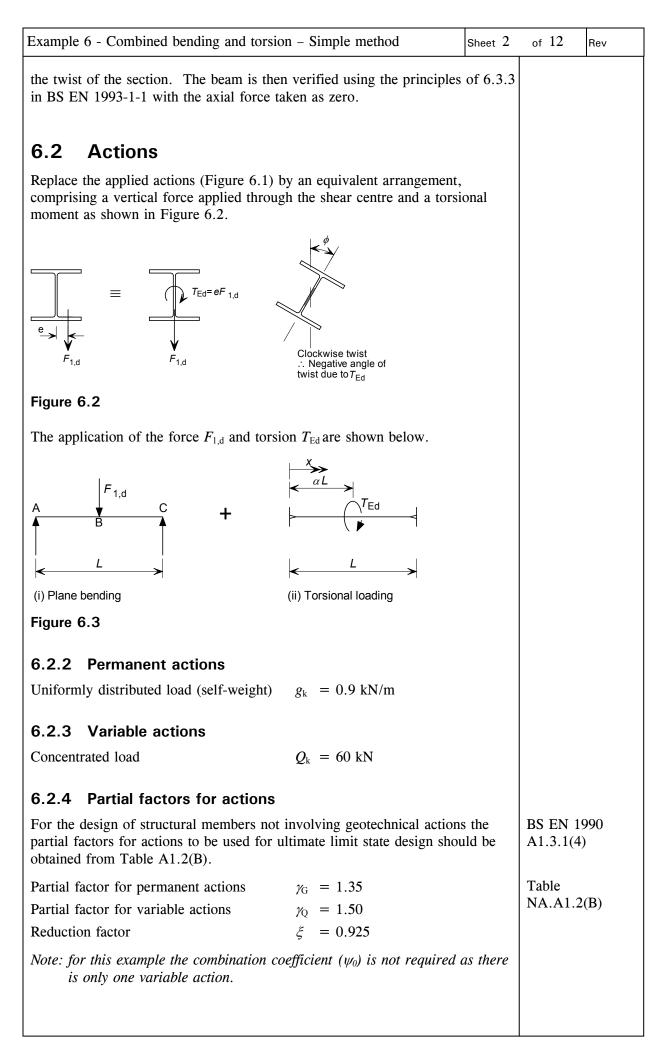
| Example 5 - Unrestrained beam with end moments - Class 3 section s                                                         | heet 4          | of 9      | Rev     |
|----------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|---------|
| 24.92 < 58.32                                                                                                              |                 |           |         |
| Therefore, the web is Class 1 under bending.                                                                               |                 |           |         |
| Therefore the section is Class 3 under bending.                                                                            |                 |           |         |
|                                                                                                                            |                 |           |         |
| 5.5 Partial factors for resistance                                                                                         |                 |           |         |
| $\gamma_{M0} = 1.0$<br>$\gamma_{M1} = 1.0$                                                                                 |                 | NA.2.15   |         |
|                                                                                                                            |                 |           |         |
| 5.6 Cross-sectional resistance                                                                                             |                 |           |         |
| 5.6.1 Shear buckling                                                                                                       |                 |           |         |
| The shear buckling resistance for webs should be verified according to Section 5 of BS EN 1993-1-5 if:                     |                 | 6.2.6(6)  |         |
| $\frac{h_{\rm w}}{t_{\rm w}} > 72 \frac{\varepsilon}{\eta}$                                                                |                 | Eq (6.23) |         |
| $\eta = 1.0$                                                                                                               |                 | BS EN 19  | 993-1-5 |
| $h_{\rm w} = h - 2t_{\rm f} = 307.9 - (2 \times 15.4) = 277.1 {\rm mm}$                                                    |                 | NA.2.4    |         |
| $\frac{h_{\rm w}}{t_{\rm w}} = \frac{277.1}{9.9} = 27.99$                                                                  |                 |           |         |
| $72\frac{\varepsilon}{\eta} = 72 \times \frac{0.81}{1.0} = 58.32$                                                          |                 |           |         |
| 27.99 < 58.32                                                                                                              |                 |           |         |
| Therefore the shear buckling resistance of the web does not need to be verified.                                           |                 |           |         |
| 5.6.2 Shear resistance                                                                                                     |                 |           |         |
| Verify that:                                                                                                               |                 | 6.2.6(1)  |         |
| $\frac{V_{\rm Ed}}{V_{\rm c,Rd}} \le 1.0$                                                                                  |                 | Eq (6.17) |         |
| $V_{c,Rd}$ is equal to the design plastic shear resistance ( $V_{pl,Rd}$ ).                                                |                 |           |         |
| $V_{\rm pl,Rd} = \frac{A_{\rm v} \left(f_{\rm y} / \sqrt{3}\right)}{\gamma_{\rm M0}}$                                      |                 |           |         |
| $A_v$ is the shear area and is determined as follows for rolled I and H section with the load applied parallel to the web. | ons             |           |         |
| $A_{\rm v} = A - 2bt_{\rm f} + t_{\rm f} (t_{\rm w} + 2r)$ but not less than $\eta h_{\rm w} t_{\rm w}$                    |                 |           |         |
| $= 123 \times 10^{2} - (2 \times 305.3 \times 15.4) + 15.4 \times (9.9 + (2 \times 15.2)) = 3517.38$                       | mm <sup>2</sup> |           |         |
|                                                                                                                            |                 |           |         |
|                                                                                                                            |                 |           |         |

I

|                                                                                                                                                                                                              |                               |                       | 1   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------|-----|
| Example 5 - Unrestrained beam with end moments - Class 3 section                                                                                                                                             | Sheet 5                       | of 9                  | Rev |
| $\eta h_{\rm w} t_{\rm w} = 1.0 \times 276.8 \times 9.9 = 2740.32  {\rm mm}^2$                                                                                                                               |                               |                       |     |
| $2740.31 \text{ mm}^2 < 3517.38 \text{ mm}^2$                                                                                                                                                                |                               |                       |     |
| Therefore, $A_v = 3517.38 \text{ mm}^2$                                                                                                                                                                      |                               |                       |     |
| The plastic design shear resistance is:                                                                                                                                                                      |                               |                       |     |
| $V_{\rm c,Rd} = V_{\rm pl,Rd} = \frac{A_{\rm v} (f_{\rm y} / \sqrt{3})}{\gamma_{\rm M0}} = \frac{3517.38 \times (355 / \sqrt{3})}{1.0} \times 10^{-3} = 721 \text{ kN}$                                      |                               | 6.2.6(2)<br>Eq (6.18) |     |
| Maximum design shear occurs at A, therefore the design shear $V_{\rm Ed} = V_{\rm A, Ed} = 225 \text{ kN}$                                                                                                   |                               | Sheet 2               |     |
| $\frac{V_{\rm Ed}}{V_{\rm c,Rd}} = \frac{225}{721} = 0.31 < 1.0$                                                                                                                                             |                               |                       |     |
| Therefore the shear resistance of the section is adequate.                                                                                                                                                   |                               |                       |     |
| 5.6.3 Resistance to bending                                                                                                                                                                                  |                               |                       |     |
| Verify that:                                                                                                                                                                                                 |                               | 6.2.5(1)              |     |
| $\frac{M_{\rm A,Ed}}{M_{\rm c,Rd}} \le 1.0$                                                                                                                                                                  |                               | Eq (6.12)             |     |
| At the point of maximum bending moment (A) check if the shear force reduce the bending moment resistance of the section.                                                                                     | will                          |                       |     |
| $\frac{V_{\rm c,Rd}}{2} = \frac{721}{2} = 360.5 \text{ kN}$                                                                                                                                                  |                               |                       |     |
| Shear force at maximum bending moment $V_{A,Ed}$ = 225 kN                                                                                                                                                    |                               |                       |     |
| 225  kN < 360.5  kN                                                                                                                                                                                          |                               |                       |     |
| Therefore <b>no reduction</b> in bending resistance due to shear is required.                                                                                                                                |                               | 6.2.8(2)              |     |
| The design resistance for bending for Class 3 cross-sections is:                                                                                                                                             |                               | 6.2.5(2)              |     |
| $M_{\rm c,Rd} = M_{\rm el,Rd} = \frac{W_{\rm el,y} f_y}{\gamma_{\rm M0}} = \frac{1450 \times 10^3 \times 355}{1.0} \times 10^{-6} = 515 \text{ kNm}$                                                         |                               | Eq (6.14)             |     |
| $\frac{M_{\rm A,Ed}}{M_{\rm c,Rd}} = \frac{330}{515} = 0.64 < 1.0$                                                                                                                                           |                               | Eq (6.12)             |     |
| Therefore the bending resistance of the cross section is adequate.                                                                                                                                           |                               |                       |     |
| 5.7 Buckling resistance of member in bending                                                                                                                                                                 | ]                             |                       |     |
| If the lateral torsional buckling slenderness ( $\overline{\lambda}_{LT}$ ) is less than or equal to the effects of lateral torsional buckling may be neglected, and only cross-sectional resistances apply. | o $\overline{\lambda}_{LT,0}$ | 6.3.2.2(4)            | )   |
| The value of $\overline{\lambda}_{LT,0}$ for rolled sections is given as $\overline{\lambda}_{LT,0} = 0.4$                                                                                                   |                               | NA.2.17               |     |
|                                                                                                                                                                                                              |                               |                       |     |
|                                                                                                                                                                                                              |                               |                       |     |
|                                                                                                                                                                                                              |                               |                       |     |

| Example 5 Unrestr                                                            | ained beam with and mo                                                                      | ments Class 2 section                                                                             | Chart 6  | of 9                   | Davis |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------|------------------------|-------|
| Example 5 - Offestia                                                         |                                                                                             | oments - Class 3 section                                                                          | Sheet 6  | of 9                   | Rev   |
| $\overline{\lambda}_{\rm LT} = \sqrt{\frac{W_{\rm y}f_{\rm y}}{M_{\rm cr}}}$ |                                                                                             |                                                                                                   |          | 6.3.2.2(1              | )     |
| $W_{\rm y} = W_{\rm el,y}$ For cla                                           | ass 3 cross sections.                                                                       |                                                                                                   |          |                        |       |
| moment for lateral-t                                                         | orsional buckling $(M_{cr})$ .                                                              | r determining the elastic cri<br>Here the ' <i>LTBeam</i> ' softwa<br>I website) has been used to |          |                        |       |
| When determining <i>M</i> to the beam.                                       | $M_{\rm cr}$ the following end res                                                          | straint conditions have been                                                                      | applied  |                        |       |
| LTBeam symbol                                                                | Definition                                                                                  | Restraint applied (fixed                                                                          | l/free)  |                        |       |
| v                                                                            | Lateral restraint                                                                           | Fixed                                                                                             |          |                        |       |
| $\theta$                                                                     | Torsional restraint                                                                         | Fixed                                                                                             |          |                        |       |
| v'                                                                           | Flexural restraint                                                                          | Free                                                                                              |          |                        |       |
| heta'                                                                        | Warping restraint                                                                           | Free                                                                                              |          |                        |       |
| The value for the ela                                                        | astic critical moment ob                                                                    | tained from 'LTBeam' is:                                                                          |          |                        |       |
| $M_{\rm cr} = 607.7  \rm kNm$                                                | 1                                                                                           |                                                                                                   |          |                        |       |
| Therefore,                                                                   |                                                                                             |                                                                                                   |          |                        |       |
| $\overline{\lambda}_{LT} = \sqrt{\frac{1450 \times 10^3}{607.7 \times 1}}$   | $\frac{\times 355}{0^6} = 0.92$                                                             |                                                                                                   |          |                        |       |
| 0.92 > 0.4                                                                   |                                                                                             |                                                                                                   |          |                        |       |
| Therefore the resista                                                        | ance to lateral-torsional                                                                   | buckling must be verified.                                                                        |          | 6.3.2.2(4              | )     |
| Verify that:                                                                 |                                                                                             |                                                                                                   |          |                        |       |
| $\underline{M}_{\rm Ed} \leq 1.0$                                            |                                                                                             |                                                                                                   |          | 6.3.2.1(1              | ,     |
| $\frac{1}{M_{\rm b,Rd}} \le 1.0$                                             |                                                                                             |                                                                                                   |          | Eq (6.54)              | )     |
|                                                                              | resistance moment (M.                                                                       | <sub>Rd</sub> ) of a laterally unrestrain                                                         | ad haam  | 6.3.2.1(3              | )     |
| is determined from:                                                          | resistance moment (m <sub>b</sub>                                                           | <sub>Rd</sub> ) of a faterally unrestraint                                                        |          | Eq $(6.55)$            |       |
| $M_{b,Rd} = \chi_{LT} W_y \frac{f}{\gamma_z}$                                |                                                                                             |                                                                                                   |          |                        |       |
| where:                                                                       |                                                                                             |                                                                                                   |          |                        |       |
| $W_{\rm y} = W_{\rm el,y}$ for                                               | class 3 cross sections.                                                                     |                                                                                                   |          |                        |       |
| $\chi_{\rm LT}$ is the redu                                                  | ction factor for lateral-to                                                                 | orsional buckling                                                                                 |          |                        |       |
| For UKC sections the sections may be used                                    |                                                                                             | 2.3 for determining $\chi_{LT}$ fo                                                                | r rolled |                        |       |
| $\chi_{\rm LT} = \frac{1}{\varphi_{\rm LT} + \sqrt{\varphi_{\rm I}}}$        | $\frac{1}{\left \int_{T}^{2} -\beta \overline{\lambda}_{LT}\right ^{2}}  \text{but } \le 1$ | 1.0 and $\leq \frac{1}{\overline{\lambda}_{\rm LT}^2}$                                            |          | 6.3.2.3(1<br>Eq (6.57) |       |
|                                                                              |                                                                                             |                                                                                                   |          |                        |       |
|                                                                              |                                                                                             |                                                                                                   |          |                        |       |
|                                                                              |                                                                                             |                                                                                                   |          |                        |       |
|                                                                              |                                                                                             |                                                                                                   |          |                        |       |

| Example 5 - Unrestrained beam with end moments - Class 3 section                                                                                                                 | Sheet 7 | of 9                 | Rev |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|-----|
| where:                                                                                                                                                                           |         |                      |     |
| $\Phi_{\rm LT} = 0.5 \times \left[ 1 + \alpha_{\rm LT} \left( \overline{\lambda}_{\rm LT} - \overline{\lambda}_{\rm LT,0} \right) + \beta \overline{\lambda}_{\rm LT}^2 \right]$ |         |                      |     |
| From the UK National Annex $\overline{\lambda}_{LT,0} = 0.4$ and $\beta = 0.75$                                                                                                  |         | NA.2.17              |     |
| The appropriate buckling curve depends on $h/b$ :                                                                                                                                |         |                      |     |
| $\frac{h}{b} = \frac{307.9}{305.3} = 1.01$                                                                                                                                       |         |                      |     |
| 1.01 < 2, therefore use buckling curve 'b'                                                                                                                                       |         | NA.2.17              |     |
| For buckling curve 'b', $\alpha_{LT} = 0.34$                                                                                                                                     |         | NA.2.16<br>Table 6.5 |     |
| $\Phi_{\rm LT} = 0.5 \times \left[1 + 0.34 \times (0.92 - 0.4) + (0.75 \times 0.92^2)\right] = 0.91$                                                                             |         | 6.3.2.3(1)           | )   |
| $\chi_{\rm LT} = \frac{1}{0.91 + \sqrt{0.91^2 - (0.75 \times 0.92^2)}} = 0.74$                                                                                                   |         |                      |     |
| $\frac{1}{\overline{\lambda}_{LT}^{2}} = \frac{1}{0.92^{2}} = 1.18$                                                                                                              |         |                      |     |
| 0.74 < 1.0 < 1.18                                                                                                                                                                |         |                      |     |
| Therefore,                                                                                                                                                                       |         |                      |     |
| $\chi_{\rm LT} = 0.74$                                                                                                                                                           |         |                      |     |
| To account for the shape of the bending moment distribution, $\chi_{LT}$ may be modified by the use of a factor 'f'.                                                             | be      | 6.3.2.3(2)           | )   |
| $\chi_{\rm LT,mod} = \frac{\chi_{\rm LT}}{f}$ but $\chi_{\rm LT,mod} \le 1.0$                                                                                                    |         | Eq (6.58)            |     |
| where:                                                                                                                                                                           |         |                      |     |
| $f = 1 - 0.5 (1 - k_c) \left[ 1 - 2 \left( \overline{\lambda}_{LT} - 0.8 \right)^2 \right]$ but $f \le 1.0$                                                                      |         | 6.3.2.3(2)           | )   |
| $k_{\rm c} = \frac{1}{\sqrt{C_1}}$                                                                                                                                               |         | NA.2.18              |     |
| $C_1$ may be obtained from either tabulated data given in NCCI, such as A Steel document SN003, or determined from:                                                              | Access  |                      |     |
| $C_1 = \frac{M_{\rm cr}(\text{actual bending moment diagram})}{M_{\rm cr}(\text{uniform bending moment diagram})}$                                                               |         |                      |     |
| As a value for $C_1$ for the bending moment diagram given in Figure 5.2 given in the Access Steel document SN003 the value for $C_1$ will be calc                                |         |                      |     |
| Applying a uniform bending moment to the beam, the value of $M_{cr}$ deter<br>from the ' <i>LTBeam</i> ' software is:                                                            | rmined  |                      |     |
| $M_{\rm cr} = 460.5  \rm kNm$                                                                                                                                                    |         |                      |     |
|                                                                                                                                                                                  |         |                      |     |
|                                                                                                                                                                                  |         |                      |     |
|                                                                                                                                                                                  |         |                      |     |


| Example 5 - Unrestrained beam with end moments - Class 3 section                                                                                                                                                                                                                                                                     | Sheet 8         | of 9                               | Rev    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------|--------|
| $C_1 = \frac{607.7}{460.5} = 1.32$                                                                                                                                                                                                                                                                                                   |                 |                                    |        |
| $k_{\rm c} = \frac{1}{\sqrt{1.32}} = 0.87$                                                                                                                                                                                                                                                                                           |                 |                                    |        |
| $f = 1 - 0.5 \times (1 - 0.87) \times [1 - 2 \times (0.92 - 0.8)^2] = 0.94$                                                                                                                                                                                                                                                          |                 | 6.3.2.3(2)                         | )      |
| $\chi_{\rm LT,mod} = \frac{0.74}{0.94} = 0.79$                                                                                                                                                                                                                                                                                       |                 | Eq (6.58)                          |        |
| The design buckling resistance moment $(M_{b,Rd})$ of a laterally unrestrained is determined from:                                                                                                                                                                                                                                   | l beam          |                                    |        |
| $M_{\rm b,Rd} = \chi_{\rm LT} W_{\rm y} \frac{f_{\rm y}}{\gamma_{\rm M1}}$                                                                                                                                                                                                                                                           |                 | Eq (6.55)                          |        |
| where:                                                                                                                                                                                                                                                                                                                               |                 |                                    |        |
| $\chi_{\rm LT} = \chi_{\rm LT,mod}$                                                                                                                                                                                                                                                                                                  |                 |                                    |        |
| For this beam $M_{b,Rd} = 0.79 \times 1450 \times 10^3 \times \frac{355}{1.0} \times 10^{-6} = 407 \text{ kNm}$                                                                                                                                                                                                                      |                 |                                    |        |
| $\frac{M_{\rm A,Ed}}{M_{\rm b,Rd}} = \frac{330}{407} = 0.81 < 1.0$                                                                                                                                                                                                                                                                   |                 | Sheet 2<br>6.3.2.1(1)<br>Eq (6.54) | )      |
| Therefore the design buckling resistance of the member is adequate.                                                                                                                                                                                                                                                                  |                 | * ` /                              |        |
| 5.8 Web subject to transverse forces                                                                                                                                                                                                                                                                                                 |                 |                                    |        |
| The verification for web subject to transverse forces should be carried of<br>the supports and at the points of load application. However, as the reac<br>are transferred through end plates and the loads are applied through the<br>flange, there is no need to verify the resistance of the web to transverse<br>in this example. | tions<br>bottom |                                    |        |
|                                                                                                                                                                                                                                                                                                                                      |                 | Page refe                          | rences |
| 5.9 Blue Book Approach                                                                                                                                                                                                                                                                                                               |                 | given in S                         | ection |
| The design resistances may be obtained from SCI publication P363.                                                                                                                                                                                                                                                                    |                 | 5.9 are to unless oth              |        |
| Consider the $305 \times 305 \times 97$ UKC in S355                                                                                                                                                                                                                                                                                  |                 | stated.                            |        |
| <b>5.9.1 Design bending moments and shear forces</b><br>The design bending moments and shear forces are shown in Figure 5.2                                                                                                                                                                                                          |                 |                                    |        |
| Design bending moment at A $M_{A,Ed} = 330$ kNm                                                                                                                                                                                                                                                                                      |                 |                                    |        |
| Design bending moment at B $M_{A,Ed}$ Boo in the $M_{B,Ed}$ = 320 kNm                                                                                                                                                                                                                                                                |                 |                                    |        |
| Maximum design shear force (at A) $V_{A,Ed} = 225 \text{ kN}$                                                                                                                                                                                                                                                                        |                 |                                    |        |
| 5.9.2 Cross-section classification                                                                                                                                                                                                                                                                                                   |                 |                                    |        |
| Under bending the section is Class 3.                                                                                                                                                                                                                                                                                                |                 | Page D-70                          | 5      |
|                                                                                                                                                                                                                                                                                                                                      |                 |                                    |        |
|                                                                                                                                                                                                                                                                                                                                      |                 |                                    |        |

| Example 5 - Unrestrained beam with end moments - Class 3 section Sheet 9 | of 9     | Rev |
|--------------------------------------------------------------------------|----------|-----|
| 5.9.3 Cross sectional resistance                                         |          |     |
| Shear resistance                                                         |          |     |
| $V_{\rm c,Rd}$ = 721 kN                                                  | Page D-1 | 10  |
| $\frac{V_{\rm A,Ed}}{V_{\rm c,Rd}} = \frac{225}{721} = 0.31 < 1.0$       |          |     |
| Therefore the shear resistance is adequate                               |          |     |
| Bending resistance                                                       |          |     |
| $\frac{V_{\rm c,Rd}}{2} = \frac{721}{2} = 360.5 \text{ kN}$              |          |     |
| $V_{\rm A, Ed}$ = 225 kN < 360.5 kN                                      |          |     |
| Therefore there is <b>no reduction</b> in bending resistance.            |          |     |
| $M_{\rm c,y,Rd}$ = 513 kNm                                               | Page D-7 | 6   |
| $\frac{M_{\rm Ed}}{M_{\rm c,y,Rd}} = \frac{330}{513} = 0.64 < 1.0$       |          |     |
| Therefore the bending resistance is adequate                             |          |     |
| 5.9.4 Member buckling resistance                                         |          |     |
| From Section 5.6 of this example                                         |          |     |
| $C_1 = 1.32$                                                             | Sheet 8  |     |
| From interpolation for $C_1 = 1.32$ and $L = 9.0$ m                      | Page D-7 | 6   |
| $M_{\rm b,Rd}$ = 406 kNm                                                 |          |     |
| $\frac{M_{\rm A,Ed}}{M_{\rm b,Rd}} = \frac{330}{406} = 0.81 < 1.0$       |          |     |
| Therefore the buckling resistance is adequate                            |          |     |
|                                                                          |          |     |
|                                                                          |          |     |
|                                                                          |          |     |
|                                                                          |          |     |
|                                                                          |          |     |
|                                                                          |          |     |
|                                                                          |          |     |
|                                                                          |          |     |
|                                                                          |          |     |
|                                                                          |          |     |
|                                                                          |          |     |
|                                                                          |          |     |
|                                                                          |          |     |

|                                                                                                                                                                                                                                                                              | Job No.                                   | CDS164                                           |                            | Sheet 1      | of      | 12               | Rev                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------|----------------------------|--------------|---------|------------------|--------------------------------|
|                                                                                                                                                                                                                                                                              | Job Title                                 | Worked example                                   | nples to the               | Eurocode     | es with | UK               | NA                             |
| Silwood Park, Ascot, Berks SL5 7QN<br>Telephone: (01344) 636525                                                                                                                                                                                                              | Subject                                   | Example 6 -<br>torsion – Sir                     |                            |              | ed benc | ling a           | and                            |
| Fax: (01344) 636570                                                                                                                                                                                                                                                          | Client                                    | SCI                                              | Made by                    | MEB          | Date    | Feb              | 2009                           |
| CALCULATION SHEET                                                                                                                                                                                                                                                            |                                           | 501                                              | Checked by                 | DGB          | Date    | Jul 2            | 2009                           |
| torsion – Sim<br>6.1 Scope<br>The simply supported (but with to<br>each ends) beam (254 × 254 × 89                                                                                                                                                                           | rsionally re                              | estraining end                                   | •                          |              | Natio   | onal 1<br>ss oth | luding it.<br>Annex,<br>erwise |
| along its length. An eccentric loa<br>of the span in such a way that it d<br>member. The end conditions are<br>bending and fixed against torsion,<br>verify the resistance of the beam i                                                                                     | loes not pro<br>considered<br>but free fo | ovide any later<br>to be simply<br>or warping. F | al restraint supported for | to the<br>or |         |                  |                                |
|                                                                                                                                                                                                                                                                              | n                                         | e =75 mm                                         |                            |              |         |                  |                                |
| $ \begin{array}{c} \downarrow \\ F_{1,d} \\ \leftarrow L = 4000 \text{ mm} \\ \hline Figure 6.1 \end{array} $                                                                                                                                                                | *                                         | F <sub>1,d</sub>                                 |                            |              |         |                  |                                |
| <ul> <li><i>L</i> = 4000 mm</li> <li>Figure 6.1</li> </ul>                                                                                                                                                                                                                   |                                           |                                                  |                            |              |         |                  |                                |
| <i>L</i> = 4000 mm Figure 6.1 The design aspects covered in this                                                                                                                                                                                                             | example a                                 |                                                  |                            |              |         |                  |                                |
| <i>L</i> = 4000 mm<br>Figure 6.1<br>The design aspects covered in this<br>Deflections and twist at SLS                                                                                                                                                                       | example a                                 |                                                  |                            |              |         |                  |                                |
| <i>L</i> = 4000 mm<br>Figure 6.1<br>The design aspects covered in this<br>Deflections and twist at SLS<br>Cross section classification                                                                                                                                       | -                                         | re:                                              |                            |              |         |                  |                                |
| <i>L</i> = 4000 mm<br>Figure 6.1<br>The design aspects covered in this<br>Deflections and twist at SLS                                                                                                                                                                       | -                                         | re:                                              |                            |              |         |                  |                                |
| <ul> <li><i>L</i> = 4000 mm</li> <li>Figure 6.1</li> <li>The design aspects covered in this</li> <li>Deflections and twist at SLS</li> <li>Cross section classification</li> <li>Cross-sectional resistance (ber</li> </ul>                                                  | -                                         | re:                                              |                            |              |         |                  |                                |
| <ul> <li><i>L</i> = 4000 mm</li> <li>Figure 6.1</li> <li>The design aspects covered in this</li> <li>Deflections and twist at SLS</li> <li>Cross section classification</li> <li>Cross-sectional resistance (ben – Shear buckling</li> </ul>                                 | -                                         | re:                                              |                            |              |         |                  |                                |
| <ul> <li><i>L</i> = 4000 mm</li> <li>Figure 6.1</li> <li>The design aspects covered in this</li> <li>Deflections and twist at SLS</li> <li>Cross section classification</li> <li>Cross-sectional resistance (ben – Shear buckling – Shear</li> </ul>                         | ding about                                | re:                                              |                            |              |         |                  |                                |
| <ul> <li><i>L</i> = 4000 mm</li> <li>Figure 6.1</li> <li>The design aspects covered in this</li> <li>Deflections and twist at SLS</li> <li>Cross section classification</li> <li>Cross-sectional resistance (ben – Shear buckling – Shear</li> <li>Bending moment</li> </ul> | ding about                                | re:<br>y-y axis):                                |                            |              |         |                  |                                |

- Cross-sectional resistance
- Buckling resistance.

A complete and exhaustive method on combined bending and torsion is given in SCI publication P385. However, the following simplified method may be used for I and H-sections subject to combined bending and torsion. The method has been used in practice in building design for many years. It ignores the pure St Venant stiffness of the beam and the small component of the major axis bending moment that is applied as a minor axis bending moment due to



| Example 6 - Combined bending and torsion – Simple method                                                                                                           | Sheet 3  | of 12 | Rev |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-----|
|                                                                                                                                                                    |          | 01 12 |     |
| 6.3 Design values of combined actions                                                                                                                              |          |       |     |
| 6.3.1 Values at ULS                                                                                                                                                |          |       |     |
| In accordance with equation 6.10b:                                                                                                                                 |          |       |     |
| UDL (self weight)<br>$F_{2,d} = \xi \gamma_G g_k = (0.925 \times 1.35 \times 0.9) = 1.12 \text{ kN/m}$                                                             |          |       |     |
| Concentrated load                                                                                                                                                  |          |       |     |
| $F_{1,d} = \gamma_Q Q_k = (1.5 \times 60) = 90.0 \text{ kN}$                                                                                                       |          |       |     |
| The concentrated load acts at an eccentricity of 75 mm from the centred the beam. The design force is equivalent to a concentric force plus a termoment, given by: |          |       |     |
| $T_{\rm Ed} = F_{1,\rm d} \times e = 90 \times 0.075 = 6.75 \text{ kNm}$                                                                                           |          |       |     |
| 6.3.2 Force in flanges due to torsion                                                                                                                              |          |       |     |
| In this simplified method, the torsional moment is considered as two eq<br>opposite lateral forces applied to the flanges as shown below.                          | jual and |       |     |
|                                                                                                                                                                    |          |       |     |
| $T_{Ed} \equiv F_{f,Ed}$                                                                                                                                           |          |       |     |
| Figure 6.4                                                                                                                                                         |          |       |     |
|                                                                                                                                                                    |          |       |     |
| The force $F_{f,Ed}$ , acting at each flange, is given by:<br>$T_{Ed}$ 6.75                                                                                        |          |       |     |
| $F_{\rm f,Ed} = \frac{T_{\rm Ed}}{h - t_{\rm f}} = \frac{6.75}{(260.3 - 17.3) \times 10^{-3}} = 27.8 \text{ kN}$                                                   |          |       |     |
| 6.3.3 Values at SLS                                                                                                                                                |          |       |     |
| The SLS value of the concentrated load is:                                                                                                                         |          |       |     |
| $F_{1,d,ser} = Q = 60.0 \text{ kN}$                                                                                                                                |          |       |     |
| The force at each flange at SLS is therefore:<br>T                                                                                                                 |          |       |     |
| $F_{\rm f,Ed,ser} = \frac{T_{\rm Ed,ser}}{h - t_{\rm f}} = \frac{60 \times 0.075}{(260.3 - 17.3) \times 10^{-3}} = 18.5 \text{ kN}$                                |          |       |     |
| 6.4 Design bending moment and shear force                                                                                                                          | s at     |       |     |
| Ultimate Limit State                                                                                                                                               |          |       |     |
| Design bending moment at B $M_{y,Ed} = 92 \text{ kNm}$<br>Design shear force at supports (A and C) $V = \frac{8}{2} V = -\frac{47}{2} \text{ kN}$                  |          |       |     |
| Design shear force at supports (A and C) $V_{A,Ed} \& V_{C,Ed} = 47 \text{ kN}$<br>Design shear force at mid-span (B) $V_{B,Ed} = 47 \text{ kN}$                   |          |       |     |
|                                                                                                                                                                    |          |       |     |
|                                                                                                                                                                    |          |       |     |
|                                                                                                                                                                    |          |       |     |

| Example 6 - Combined bending and torsio                                                                                                                              | on – Simple method                    | Sheet 4 | of 12 Rev                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------|--------------------------|
| 6.5 Buckling length                                                                                                                                                  |                                       |         |                          |
| Since the beam is unrestrained between the                                                                                                                           | ne supports, there is only one s      | segment |                          |
| length to consider in this example, with a bending, the beam is simply supported.                                                                                    |                                       | •       |                          |
| BS EN 1993-1-1 does not give guidance f<br>beams, the buckling length should be take<br>unless the designer considers the beam to                                    | en as being equal to the span le      |         |                          |
| Length to consider, $L = 4000 \text{ mm}$ Therefore, $L_{cr} = 1.0 \times L$                                                                                         |                                       |         |                          |
| 6.6 Section properties                                                                                                                                               |                                       |         |                          |
| $254 \times 254 \times 89$ UKC in S275 steel                                                                                                                         |                                       |         |                          |
| From section property tables:                                                                                                                                        |                                       |         |                          |
| Depth                                                                                                                                                                | h = 260.3  mm                         |         | P363                     |
| Width                                                                                                                                                                | b = 256.3  mm                         |         |                          |
| Web thickness                                                                                                                                                        | $t_w = 10.3 \text{ mm}$               |         |                          |
| Flange thickness                                                                                                                                                     | $t_f = 17.3 \text{ mm}$               |         |                          |
| Depth between fillets                                                                                                                                                | d = 200.3  mm                         |         |                          |
| Root radius                                                                                                                                                          | r = 12.7  mm                          |         |                          |
| Plastic modulus y-y axis                                                                                                                                             | $W_{\rm pl,y} = 1 \ 220 \ {\rm cm}^3$ |         |                          |
| Elastic modulus y-y axis                                                                                                                                             | $W_{\rm el,y} = 1 \ 100 \ {\rm cm}^3$ |         |                          |
| Radius of gyration z-z axis                                                                                                                                          | $i_z = 6.55 \text{ cm}$               |         |                          |
| Torsion constant                                                                                                                                                     | $I_{\rm T}$ = 102 cm <sup>4</sup>     |         |                          |
| Area                                                                                                                                                                 | $A = 113 \text{ cm}^2$                |         |                          |
| Modulus of elasticity                                                                                                                                                | $E = 210 \ 000 \ \text{N/mm}^2$       |         | 3.2.6(1)                 |
| For buildings that will be built in the UK strength $(f_y)$ and the ultimate strength $(f_u)$ obtained from the product standard. When nominal value should be used. | for structural steel should be t      | those   | NA.2.4                   |
| For grade S275 steel and 16 mm $< t \le 4$<br>Yield strength $f_y = R_{eH} = 265 \text{ N/mm}^2$                                                                     | 0 mm                                  |         | BS EN 10025-2<br>Table 7 |
| 6.7 Deflections and twist                                                                                                                                            | t at SLS                              |         |                          |
| Before carrying out the resistance verifical acceptability of the deflection and twist of state loading.                                                             | ÷                                     |         |                          |
| The vertical deflection of the beam should given in Example 2 using the SLS loads. given here.                                                                       | ÷                                     |         |                          |
| The twist of the beam is determined from flanges.                                                                                                                    | the horizontal displacement o         | f the   |                          |
|                                                                                                                                                                      |                                       |         |                          |
|                                                                                                                                                                      |                                       |         |                          |

| Example 6 - Combined bending and torsion – Simple method Sheet                                                                                                                                                                                                                                      | 5 of 12 | Rev |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
| Considering one flange, the inertia of a single flange, $I_{\rm f}$ , is given by:                                                                                                                                                                                                                  |         |     |
| $I_{\rm f} = \frac{t_{\rm f} \times b^3}{12} = \frac{17.3 \times 256.3^3}{12} \times 10^{-4} = 2427.2 \text{ cm}^4$                                                                                                                                                                                 |         |     |
| $I_{\rm f} = \frac{12}{12} = \frac{12}{12} \times 10^{-10} = 2427.2 \mathrm{cm}$                                                                                                                                                                                                                    |         |     |
| The horizontal displacement, $u$ , of the flanges is:                                                                                                                                                                                                                                               |         |     |
| $u = \frac{F_{\rm f,Ed,ser} L^3}{48 E I_{\rm f}} = \frac{18.5 \times 10^3 \times 4000^3}{48 \times 210000 \times 2427.2 \times 10^4} = 4.8 \text{ mm}$                                                                                                                                              |         |     |
| Therefore the maximum twist is                                                                                                                                                                                                                                                                      |         |     |
| $\phi = \left(\frac{2u}{h - t_{\rm f}}\right) = \left(\frac{2 \times 4.8}{260.3 - 17.3}\right) = 0.04 \text{ radians} = 2.3^{\circ}$                                                                                                                                                                |         |     |
| This twist is greater than the suggested limit of $2.0^{\circ}$ given in SCI publication P385. However, if the more rigorous approach given in P385 is used a twist of $1.26^{\circ}$ is determined. Therefore, this example will continue to use the $254 \times 254 \times 89$ UKC in S275 steel. |         |     |
| The twist is in addition to any rotations due to the movement of the connections or deflections of the supporting structure.                                                                                                                                                                        |         |     |
| 6.8 Cross section classification                                                                                                                                                                                                                                                                    |         |     |
| $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{265}} = 0.94$                                                                                                                                                                                                                              | Table   | 5.2 |
| Outstand of compression flange                                                                                                                                                                                                                                                                      | Table   | 5.2 |
| $c = \frac{b - t_w - 2r}{2} = \frac{256.3 - 10.3 - (2 \times 12.7)}{2} = 110.3 \text{ mm}$                                                                                                                                                                                                          |         |     |
| $\frac{c}{t_{\rm f}} = \frac{110.3}{17.3} = 6.4$                                                                                                                                                                                                                                                    |         |     |
| The limiting value for Class 1 is $\frac{c}{t_f} \le 9\varepsilon = 9 \times 0.94 = 8.46$                                                                                                                                                                                                           |         |     |
| 6.4 < 8.46                                                                                                                                                                                                                                                                                          |         |     |
| Therefore, the flange in compression is Class 1.                                                                                                                                                                                                                                                    |         |     |
| Web subject to bending                                                                                                                                                                                                                                                                              |         |     |
| c = d = 200.3  mm                                                                                                                                                                                                                                                                                   |         |     |
| $\frac{c}{t_{\rm w}} = \frac{200.3}{10.3} = 19.4$                                                                                                                                                                                                                                                   |         |     |
| The limiting value for Class 1 is $\frac{c}{t_{\rm w}} \le 72\varepsilon = 72 \times 0.94 = 67.7$                                                                                                                                                                                                   |         |     |
| 19.4 < 67.7                                                                                                                                                                                                                                                                                         |         |     |
| Therefore, the web in bending is Class 1.                                                                                                                                                                                                                                                           |         |     |
| Therefore the cross section is Class 1.                                                                                                                                                                                                                                                             |         |     |

| <b>5.9</b> Partial factors for resistance<br>$r_{M0} = 1.0$<br>$r_{M1} = 1.0$                                                                  | NA.2.15               |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
| 6.10 Cross-sectional resistance                                                                                                                |                       |  |
| 6.10.1 Shear buckling                                                                                                                          |                       |  |
| The shear buckling resistance for webs should be verified according to ection 5 of BS EN 1993-1-5 if:                                          | 6.2.6(6)              |  |
| $\frac{h_{\rm w}}{t_{\rm w}} > 72 \frac{\varepsilon}{\eta}$                                                                                    | Eq (6.23)             |  |
| q = 1.0 (conservative)                                                                                                                         |                       |  |
| $h_{\rm w} = h - 2t_{\rm f} = 260.3 - (2 \times 17.3) = 225.7 \rm{mm}$                                                                         |                       |  |
| $\frac{h_{\rm w}}{t_{\rm w}} = \frac{225.7}{10.3} = 21.9$                                                                                      |                       |  |
| $72\frac{\varepsilon}{\eta} = 72 \times \frac{0.94}{1.0} = 67.7$                                                                               |                       |  |
| 1.9 < 67.7                                                                                                                                     |                       |  |
| Therefore the shear buckling resistance of the web does not need to be perified.                                                               |                       |  |
| 5.10.2 Shear resistance                                                                                                                        |                       |  |
| Verify that:                                                                                                                                   | 6.2.6(1)              |  |
| $\frac{V_{\rm Ed}}{V_{\rm c,Rd}} \le 1.0$                                                                                                      | Eq (6.17)             |  |
| $V_{c,Rd}$ is equal to the design plastic shear resistance ( $V_{pl,Rd}$ ).                                                                    |                       |  |
| $I_v$ is the shear area and is determined as follows for rolled I and H sections with the load applied parallel to the web:                    |                       |  |
| $A_{\rm v} = A - 2bt_{\rm f} + t_{\rm f} (t_{\rm w} + 2r)$ but not less than $\eta h_{\rm w} t_{\rm w}$                                        |                       |  |
| $= 113 \times 10^{2} - (2 \times 256.3 \times 17.3) + 17.3 \times (10.3 + (2 \times 12.7)) = 3049.6 \text{ mm}^{2}$                            |                       |  |
| $\eta h_{\rm w} t_{\rm w} = 1.0 \times 225.7 \times 10.3 = 2324.7 \ {\rm mm}^2$                                                                |                       |  |
| $324.7 \text{ mm}^2 < 3049.6 \text{ mm}^2$                                                                                                     |                       |  |
| Therefore, $A_{\nu} = 3049.6 \text{ mm}^2$                                                                                                     |                       |  |
| Therefore the design plastic shear resistance is:                                                                                              |                       |  |
| $V_{c,Rd} = V_{pl,Rd} = \frac{A_v (f_y / \sqrt{3})}{\gamma_{M0}} = \frac{3049.6 \times (265 / \sqrt{3})}{1.0} \times 10^{-3} = 467 \text{ kN}$ | 6.2.6(2)<br>Eq (6.18) |  |

| Example 6 - Combined bending and torsion – Simple method Sheet 7                                                                                                                 | of 12 Rev               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| From Sheet 3, the maximum design shear is                                                                                                                                        | Sheet 3                 |
| $V_{Ed} = 47.0 \text{ kN}$                                                                                                                                                       |                         |
| $\frac{V_{\rm Ed}}{V_{\rm c,Rd}} = \frac{47}{467} = 0.10 < 1.0$                                                                                                                  |                         |
| Therefore the shear resistance of the section is adequate.                                                                                                                       |                         |
| 6.10.3 Resistance to bending                                                                                                                                                     |                         |
| Verify that:                                                                                                                                                                     | 6.2.5(1)                |
| $\frac{M_{\rm y,Ed}}{M_{\rm c,Rd}} \le 1.0$                                                                                                                                      | Eq (6.12)               |
| As the shear at maximum bending moment $V_{\rm B,Ed}$ is the same as the maximum                                                                                                 |                         |
| shear and $\frac{V_{\rm Ed}}{V_{\rm c,Rd}} = 0.10 < 0.5$ no reduction in bending moment resistance due to shear is required.                                                     |                         |
| The design resistance for bending for Class 1 and 2 cross sections is:                                                                                                           | 6.2.5(2)                |
| $M_{\rm c,Rd} = M_{\rm pl,Rd} = \frac{W_{\rm pl,y} f_y}{\gamma_{\rm M0}} = \frac{1220 \times 10^3 \times 265}{1.0} \times 10^{-6} = 323 \text{ kNm}$                             | Eq (6.13)               |
| $\frac{M_{\rm Ed}}{M_{\rm c,Rd}} = \frac{92}{323} = 0.29 < 1.0$                                                                                                                  |                         |
| Therefore the resistance of the cross section to bending is adequate.                                                                                                            |                         |
| 6.11 Buckling resistance in bending                                                                                                                                              |                         |
| Verify that:                                                                                                                                                                     | 6.3.2.1(1)              |
| $\frac{M_{\rm Ed}}{M_{\rm b,Rd}} \le 1.0$                                                                                                                                        | Eq (6.54)               |
| The design buckling resistance moment is determined from:                                                                                                                        | 6.3.2.1(3)              |
| $M_{\rm b,Rd} = \chi_{\rm LT} W_{\rm y} \frac{f_{\rm y}}{\gamma_{\rm M1}}$                                                                                                       | Eq (6.55)               |
| $W_y = W_{pl,y}$ for Class 1 and 2 cross-sections                                                                                                                                |                         |
| As a UKC is being considered, the method given in 6.3.2.3 for determining the reduction factor for lateral-torsional buckling ( $\chi_{LT}$ ) of rolled sections is used.        |                         |
| $\chi_{\rm LT} = \frac{1}{\varphi_{\rm LT} + \sqrt{\varphi_{\rm LT}^2 - \beta \overline{\lambda}_{\rm LT}^2}}$ but $\leq 1.0$ and $\leq \frac{1}{\overline{\lambda}_{\rm LT}^2}$ | 6.3.2.3(1)<br>Eq (6.57) |
|                                                                                                                                                                                  |                         |

|                                                                                                                                                                                                                                           | r                           |                      | 1      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|--------|
| Example 6 - Combined bending and torsion – Simple method                                                                                                                                                                                  | Sheet 8                     | of 12                | Rev    |
| where:                                                                                                                                                                                                                                    |                             |                      |        |
| $\Phi_{\rm LT} = 0.5(1 + \alpha_{\rm LT} (\overline{\lambda}_{\rm LT} - \overline{\lambda}_{\rm LT,0}) + \beta \overline{\lambda}_{\rm LT}^2)$                                                                                            |                             |                      |        |
| $\overline{\lambda}_{\mathrm{LT},0} = 0.4$ and $\beta = 0.75$                                                                                                                                                                             |                             | NA.2.17              |        |
| $\overline{\lambda}_{\rm LT} = \sqrt{\frac{W_{\rm y}f_{\rm y}}{M_{\rm cr}}}$                                                                                                                                                              |                             | 6.3.2.2(1)           | )      |
| BS EN 1993-1-1 does not give a method for determining $M_{\rm cr}$ . However, conservative method given in SCI publication P362 allows a value for be determined directly without having to calculate $M_{\rm cr}$ . That method is here. | $\bar{\lambda}_{\rm LT}$ to |                      |        |
| $\overline{\lambda}_{\rm LT} = \frac{1}{\sqrt{C_1}} 0.9 \overline{\lambda}_z \sqrt{\beta_{\rm w}}$                                                                                                                                        |                             | P362 5.6             | 2.1(5) |
| As the self weight of the section is negligible compared with the point                                                                                                                                                                   | load, it                    |                      |        |
| may be ignored when determining $\frac{1}{\sqrt{C_1}}$                                                                                                                                                                                    |                             |                      | 1 5 5  |
| Therefore, $\frac{1}{\sqrt{C_1}} = 0.86$                                                                                                                                                                                                  |                             | P362 Tab             | le 5.5 |
| $\overline{\lambda}_{z} = \frac{L_{c}}{i_{z}} \frac{1}{\lambda_{1}}$                                                                                                                                                                      |                             | P362 5.6             | 2.1(5) |
| $L_c$ is the distance between lateral restraints, therefore $L_c = 4.0 \text{ m}$                                                                                                                                                         |                             |                      |        |
| $\lambda_1 = 86$ for grade S275 Steel                                                                                                                                                                                                     |                             | P362 Tab             | le 5.2 |
| $\beta_{\rm w} = \frac{W_{\rm y}}{W_{\rm pl.y}}$                                                                                                                                                                                          |                             |                      |        |
| Where $W_y = W_{pl,y}$ for Class 1 and 2 cross-sections                                                                                                                                                                                   |                             |                      |        |
| Here the UKC considered is Class 1, therefore $\beta_{w} = 1.0$                                                                                                                                                                           |                             |                      |        |
| $\overline{\lambda}_{z} = \frac{L_{c}}{i_{z}} \frac{1}{\lambda_{1}} = \frac{4000}{65.5} \times \frac{1}{86} = 0.71$                                                                                                                       |                             |                      |        |
| $\overline{\lambda}_{\rm LT} = \frac{1}{\sqrt{C_1}} 0.9 \overline{\lambda}_z \sqrt{\beta_w} = 0.86 \times 0.9 \times 0.71 \times \sqrt{1} = 0.55$                                                                                         |                             |                      |        |
| If $\overline{\lambda}_{LT} \leq \overline{\lambda}_{LT,0}$ lateral torsional buckling effects may be neglected.                                                                                                                          |                             | 6.3.2.2(4)           | )      |
| As $0.55 > 0.4$ the lateral torsional buckling resistance should be verifi                                                                                                                                                                | ed.                         |                      |        |
| The appropriate buckling curve depends on $h/b$ :                                                                                                                                                                                         |                             | NA.2.17              |        |
| $\frac{h}{b} = \frac{260.3}{256.3} = 1.02$                                                                                                                                                                                                |                             |                      |        |
| 1.02 < 2, therefore use buckling curve 'b'                                                                                                                                                                                                |                             | NA.2.17              |        |
| For buckling curve 'b' $\alpha_{LT} = 0.34$                                                                                                                                                                                               |                             | NA.2.16<br>Table 6.5 |        |
|                                                                                                                                                                                                                                           |                             |                      |        |

| Example 6 - Combined bending and torsion – Simple method                                                                          | Sheet 9 | of 12      | Rev |
|-----------------------------------------------------------------------------------------------------------------------------------|---------|------------|-----|
| $\Phi_{\rm LT} = 0.5(1 + \alpha_{\rm LT} (\bar{\lambda}_{\rm LT} - \bar{\lambda}_{\rm LT,0}) + \beta \bar{\lambda}_{\rm LT}^{2})$ |         | 6.3.2.3(1) | )   |
| $     \Phi_{\rm LT} = 0.5 \times (1 + 0.34 \times (0.55 - 0.4) + (0.75 \times 0.55^2)) = 0.64 $                                   |         |            |     |
| $\chi_{\rm LT} = \frac{1}{\Phi_{\rm LT} + \sqrt{\Phi_{\rm LT}^2 - \beta \overline{\lambda}_{\rm LT}^2}}$                          |         | Eq (6.57)  |     |
| $\chi_{\rm LT} = \frac{1}{0.64 + \sqrt{0.64^2 - (0.75 \times 0.55^2)}} = 0.94$                                                    |         |            |     |
| $\frac{1}{\overline{\lambda}_{LT}^{2}} = \frac{1}{0.55^{2}} = 3.31$                                                               |         |            |     |
| 0.94 < 1.0 < 3.31                                                                                                                 |         | 6.3.2.3(2) | )   |
| Therefore,                                                                                                                        |         |            |     |
| $\chi_{\rm LT} = 0.94$                                                                                                            |         | Eq (6.58)  |     |
| To account for the bending moment distribution, $\chi_{LT}$ may be modified a follows:                                            | S       |            |     |
| $\chi_{\text{LT,mod}} = \frac{\chi_{\text{LT}}}{f} \text{ but } \chi_{\text{LT,mod}} \le 1.0$                                     |         |            |     |
| $f = 1 - 0.5(1 - k_c)[1 - 2(\overline{\lambda}_{LT} - 0.8)^2] \text{ but } f \le 1.0$                                             |         | 6.3.2.3(2) | )   |
| $k_{\rm c} = \frac{1}{\sqrt{C_1}}$                                                                                                |         | NA.2.18    |     |
| $\frac{1}{\sqrt{C_1}} = 0.86$                                                                                                     |         | Sheet 8    |     |
| $f = 1 - 0.5 \times (1 - 0.86) \times [1 - 2 \times (0.55 - 0.8)^2] = 0.94 < 1.0$                                                 |         |            |     |
| Therefore,                                                                                                                        |         | Eq (6.58)  |     |
| $\chi_{\text{LT,mod}} \frac{0.94}{0.94} = 1.0$ , but $\chi_{\text{LT,mod}} \le 1.0$                                               |         |            |     |
| Therefore,                                                                                                                        |         |            |     |
| $\chi_{\rm LT,mod} = 1.0$                                                                                                         |         |            |     |
| $M_{\rm b,Rd} = \chi_{\rm LT,mod} W_{\rm y} \frac{f_{\rm y}}{\gamma_{\rm M0}}$                                                    |         | Eq (6.55)  |     |
| $W_y = W_{pl,y}$ for Class 1 or 2 cross sections                                                                                  |         |            |     |
| $M_{\rm b,Rd} = 1 \times 1220 \times 10^3 \times \frac{265}{1.0} \times 10^{-6} = 323 \text{ kNm}$                                |         |            |     |
| $\frac{M_{\rm y,Ed}}{M_{\rm b,Rd}} = \frac{92}{323} = 0.29 < 1.0$                                                                 |         | Eq (6.54)  |     |
| Therefore the lateral-torsional buckling resistance is adequate.                                                                  |         |            |     |
|                                                                                                                                   |         |            |     |
|                                                                                                                                   |         |            |     |

| Example 6 - Combined bending and torsion – Simple method                                                                                                                                                                                              | Sheet 10  | of 12                 | Rev |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------|-----|
| 6.12 Resistance to combined bending and tor                                                                                                                                                                                                           | sion      |                       |     |
| 6.12.1 Cross sectional resistance                                                                                                                                                                                                                     |           |                       |     |
| Verify that:                                                                                                                                                                                                                                          |           |                       |     |
| $\left(\frac{M_{\rm Ed}}{M_{\rm c,Rd}}\right)^{\alpha} + \left(\frac{M_{\rm f,Ed}}{M_{\rm f,Rd}}\right)^{\beta} \le 1.0$                                                                                                                              |           | Based on<br>Eq (6.41) |     |
| $\alpha = 1.0$ and $\beta = 1.0$ (conservative)                                                                                                                                                                                                       |           | 6.2.9.1(6)            | )   |
| where:                                                                                                                                                                                                                                                |           |                       |     |
| $M_{\rm Ed}$ = $M_{\rm y,Ed}$ = 92 kNm                                                                                                                                                                                                                |           | Sheet 3               |     |
| $M_{\rm c,Rd}$ = 323 kNm                                                                                                                                                                                                                              |           | Sheet 9               |     |
| $M_{\rm f,Ed}$ is the maximum bending moment in the flange due to the late flange force                                                                                                                                                               | ral       |                       |     |
| $M_{\rm f,Rd}$ is the lateral bending resistance of the flange.                                                                                                                                                                                       |           |                       |     |
| Lateral bending of flange                                                                                                                                                                                                                             |           |                       |     |
| The flange force is applied at the mid-span of the beam (at the same lo<br>as the applied torque). Since the flanges are free to rotate on plan at the<br>supports, the maximum bending moment in the flange due to the lateral<br>force is given by: | he        |                       |     |
| $M_{\rm f,Ed} = \frac{F_{\rm f,Ed} L}{4} = \frac{27.8 \times 4}{4} = 27.8 \text{ kNm}$                                                                                                                                                                |           |                       |     |
| The resistance to bending of a class 1 flange is:                                                                                                                                                                                                     |           |                       |     |
| $M_{\rm f,Rd} = \frac{W_{\rm pl,y}f_{\rm f}}{\gamma_{\rm M0}}$                                                                                                                                                                                        |           |                       |     |
| Where $W_{pl}$ is the plastic modulus of the flange about its major axis (mi of the beam).                                                                                                                                                            | nor axis  |                       |     |
| $W_{\rm pl,y} = \frac{t_{\rm f} b^2}{4} = \frac{17.3 \times 256.3^2}{4} = 284.1 \times 10^3 {\rm mm}^3$                                                                                                                                               |           |                       |     |
| $M_{\rm f,Rd} = \frac{W_{\rm pl,y} f_y}{\gamma_{\rm M0}} = \frac{284.1 \times 10^3 \times 265}{1.0} \times 10^{-6} = 75 \text{ kNm}$                                                                                                                  |           |                       |     |
| Verify resistance to combined bending and torsion                                                                                                                                                                                                     |           |                       |     |
| $\left(\frac{M_{\rm Ed}}{M_{\rm c,Rd}}\right)^{\alpha} + \left(\frac{M_{\rm f,Ed}}{M_{\rm f,Rd}}\right)^{\beta} \le 1.0$                                                                                                                              |           | Based on<br>Eq (6.41) |     |
| $\left(\frac{M_{\rm Ed}}{M_{\rm c,Rd}}\right)^{\alpha} + \left(\frac{M_{\rm f,Ed}}{M_{\rm f,Rd}}\right)^{\beta} = \left(\frac{92}{323}\right)^{1} + \left(\frac{27.8}{75}\right)^{1} = 0.66 < 1.0$                                                    |           |                       |     |
| Therefore the resistance of the cross-sectional to combined bending and is adequate.                                                                                                                                                                  | d torsion |                       |     |
|                                                                                                                                                                                                                                                       |           |                       |     |

| Example 6 - Combined bending and torsion – Simple method                                                                                                                                          | Sheet 11 | of 12                 | Rev |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|-----|
|                                                                                                                                                                                                   |          | -                     |     |
| 6.12.2 Buckling resistance                                                                                                                                                                        |          |                       |     |
| Verify that:                                                                                                                                                                                      |          |                       |     |
| $k_{yy} \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Rk}}{\gamma_{M1}}} + k_{yz} \frac{M_{z,Ed} + \Delta M_{z,Ed}}{\frac{M_{z,Rk}}{\gamma_{M1}}} \le 1.0 $ (no compression)             | force)   | Based on<br>Eq (6.61) |     |
| $\chi_{LT} - \frac{\gamma_{M1}}{\gamma_{M1}} - \frac{\gamma_{M1}}{\gamma_{M1}}$                                                                                                                   |          |                       |     |
| And                                                                                                                                                                                               |          |                       |     |
| $k_{zy} \frac{M_{y,d} + \Delta M_{y,Ed}}{\chi_{LT} \frac{M_{y,Rk}}{\gamma_{M1}}} + k_{zz} \frac{M_{z,Ed} + \Delta M_{z,Ed}}{\frac{M_{z,Rk}}{\gamma_{M1}}} \le 1.0 \text{ (no compression force)}$ | )        | Based on<br>Eq (6.62) |     |
| For Class 1, 2 and 3 cross sections                                                                                                                                                               |          | Table 6.7             |     |
| $\Delta M_{y,Ed}$ and $\Delta M_{z,Ed}$ are zero.                                                                                                                                                 |          | 1000 0.7              |     |
| $M_{y,\text{Rd}} = f_y W_{\text{pl},y}$                                                                                                                                                           |          |                       |     |
| $M_{y,Rk} = f_y W_{pl,y}$ $M_{z,Rk} = f_y W_{pl,z}$                                                                                                                                               |          |                       |     |
| As $\gamma_{M1} = 1.0$ , Expressions (6.61) and (6.62) simplify to the following:                                                                                                                 |          |                       |     |
| $k_{\rm yy} \frac{M_{\rm y,Ed}}{M_{\rm b,y,Rd}} + k_{\rm yz} \frac{M_{\rm z,Ed}}{M_{\rm c,z,Rd}} \le 1.0$                                                                                         |          |                       |     |
| And                                                                                                                                                                                               |          |                       |     |
| $k_{zy} \frac{M_{y,Ed}}{M_{b,y,Rd}} + k_{zz} \frac{M_{z,Ed}}{M_{c,z,Rd}} \le 1.0$                                                                                                                 |          |                       |     |
| Interaction factors ( $k_{yi} \& k_{zi}$ )                                                                                                                                                        |          |                       |     |
| The interaction factors are determined from either Annex A (Method 1)<br>Annex B (Method 2) of BS EN 1993-1-1. For doubly symmetric sectio<br>UK National Annex allows the use of either method.  |          | NA.2.21               |     |
| Here the method given in Annex B is used.                                                                                                                                                         |          |                       |     |
| <i>M</i> h <i>\vec{M} \vec{M}</i> h                                                                                                                                                               |          |                       |     |
|                                                                                                                                                                                                   |          |                       |     |
| Ms                                                                                                                                                                                                |          |                       |     |
| Figure 6.5                                                                                                                                                                                        |          |                       |     |
| From the bending moment diagram for both the y-y and z-z axes $\psi = 1$                                                                                                                          | .0 and   | Table B.3             |     |
| $\alpha_{\rm h} = \frac{M_{\rm h}}{M_{\rm s}} = \frac{0}{92} = 0$                                                                                                                                 |          |                       |     |
| Therefore, as the loading is predominantly due to the concentrated load,                                                                                                                          |          |                       |     |
| $C_{\rm my} = C_{\rm mz} = C_{\rm mLT} = 0.9 + 0.1\alpha_{\rm h} = 0.9 + (0.1 \times 0) = 0.9$                                                                                                    |          |                       |     |
| As $N_{\rm Ed} = 0$ kN, the expressions given in Tables B.1 and B.2 simplify                                                                                                                      | to:      | Table B.1             |     |
|                                                                                                                                                                                                   |          |                       |     |
|                                                                                                                                                                                                   |          |                       |     |
|                                                                                                                                                                                                   |          |                       |     |

| Example 6 - Combined bending and torsion – Simple method                                                                                                                      | Sheet 12 of 12 Rev |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| $k_{\rm yy} = C_{\rm my} = 0.9$                                                                                                                                               |                    |
| $k_{\rm zz} = C_{\rm mz} = 0.9$                                                                                                                                               |                    |
| $k_{\rm yz} = 0.6 k_{\rm zz} = 0.6 \times 0.9 = 0.54$                                                                                                                         |                    |
| As there is no compression force ( $N_{\rm Ed} = 0$ kN), $k_{\rm zy} = 1.0$                                                                                                   | Table B.2          |
| $M_{\rm b,y,Rd} = M_{\rm b,Rd} = 323.0 \rm kNm$                                                                                                                               | Sheet 9            |
| $M_{\rm c,z,Rd} = M_{\rm f,Rd} = 75.0 \text{ kNm}$                                                                                                                            | Sheet 10           |
| $M_{\rm y,Ed}$ = 92.0 kNm                                                                                                                                                     | Sheet 3            |
| $M_{z,\mathrm{Ed}} = M_{\mathrm{f,Ed}} = 27.8 \mathrm{kNm}$                                                                                                                   | Sheet 10           |
| Hence:                                                                                                                                                                        |                    |
| $k_{yy} \frac{M_{y,Ed}}{M_{b,Rd,y}} + k_{yz} \frac{M_{z,Ed}}{M_{c,Rd,z}} = 0.9 \times \left(\frac{92.0}{323}\right) + 0.54 \times \left(\frac{27.8}{75}\right) = 0.46 < 0.46$ | \$ 1.0             |
| $K_{zy} \frac{M_{y,Ed}}{M_{b,Rd,y}} + k_{zz} \frac{M_{z,Ed}}{M_{c,Rd,z}} = 1.0 \times \left(\frac{92.0}{323}\right) + 0.9 \times \left(\frac{27.8}{75}\right) = 0.62 < 1$     | .0                 |
| Therefore the buckling resistance of the member is adequate.                                                                                                                  |                    |
|                                                                                                                                                                               |                    |
|                                                                                                                                                                               |                    |
|                                                                                                                                                                               |                    |
|                                                                                                                                                                               |                    |
|                                                                                                                                                                               |                    |
|                                                                                                                                                                               |                    |
|                                                                                                                                                                               |                    |
|                                                                                                                                                                               |                    |
|                                                                                                                                                                               |                    |
|                                                                                                                                                                               |                    |
|                                                                                                                                                                               |                    |
|                                                                                                                                                                               |                    |
|                                                                                                                                                                               |                    |
|                                                                                                                                                                               |                    |
|                                                                                                                                                                               |                    |
|                                                                                                                                                                               |                    |
|                                                                                                                                                                               |                    |
|                                                                                                                                                                               |                    |

|                                                                 | Job No.   | CDS164      |              | Sheet 1 | of 1    | .4     | Rev    |
|-----------------------------------------------------------------|-----------|-------------|--------------|---------|---------|--------|--------|
|                                                                 | Job Title | Worked exa  | mples to the | Eurocod | es with | UK     | NA     |
|                                                                 | Subject   | Example 7 - | Continuous   | beam de | signed  | elasti | cally  |
| Silwood Park, Ascot, Berks SL5 7QN<br>Telephone: (01344) 636525 |           |             |              |         |         |        |        |
| Fax: (01344) 636570                                             | Client    | SCI         | Made by      | MEB     | Date    | Feb 2  | 2009   |
| CALCULATION SHEET                                               |           | 501         | Checked by   | DGB     | Date    | Jul 2  | 009    |
| 7 Continuous beam designed electically                          |           |             |              |         |         |        | are to |

# 7 Continuous beam designed elastically

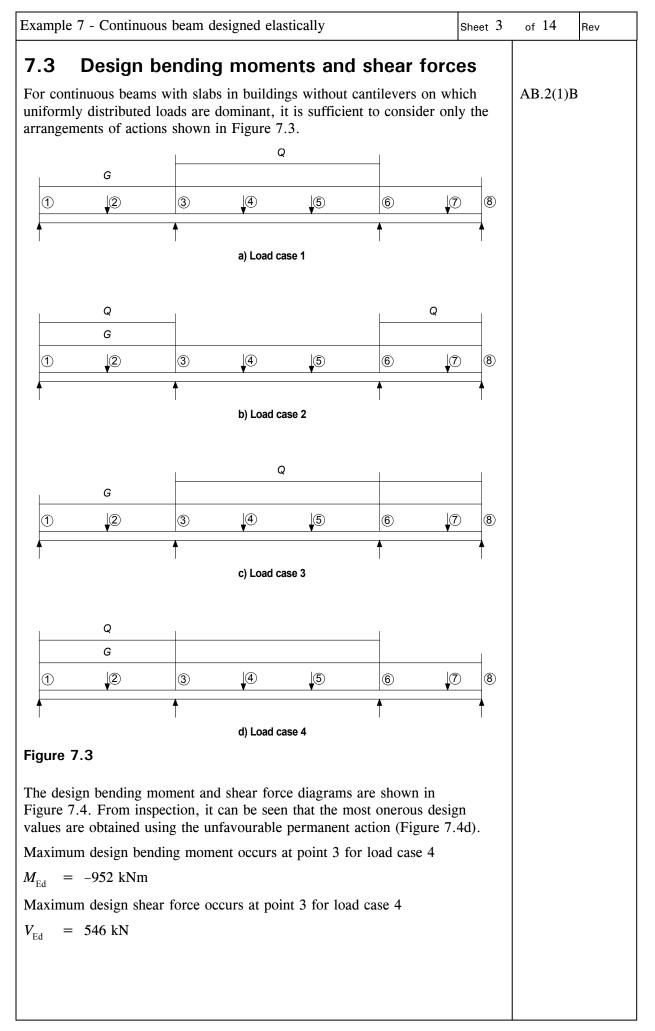
## 7.1 Scope

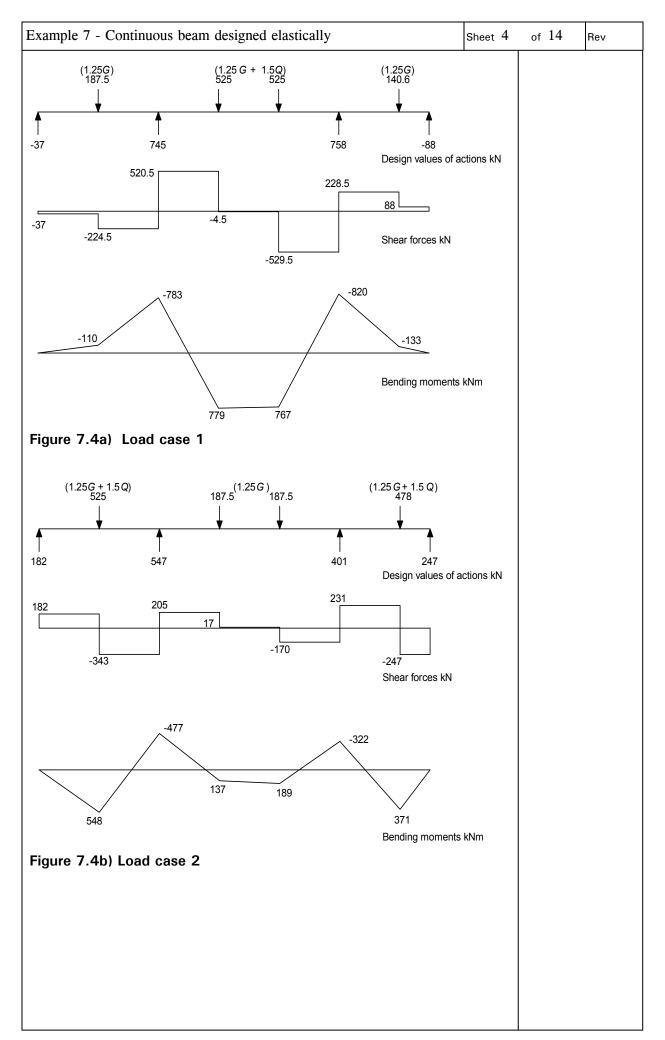
The continuous non-composite beam shown in Figure 7.1 has its top flange fully restrained laterally by a composite slab supported on secondary beams. The bottom flange is restrained at the supports and the top flange is supported at the points of load application by the secondary beams. The permanent action is 50 kN/m and the variable action is 75 kN/m from point 1 to point 6 and 100 kN/m from point 6 to point 8. Design the beam elastically in S275 steel using a uniform section throughout.

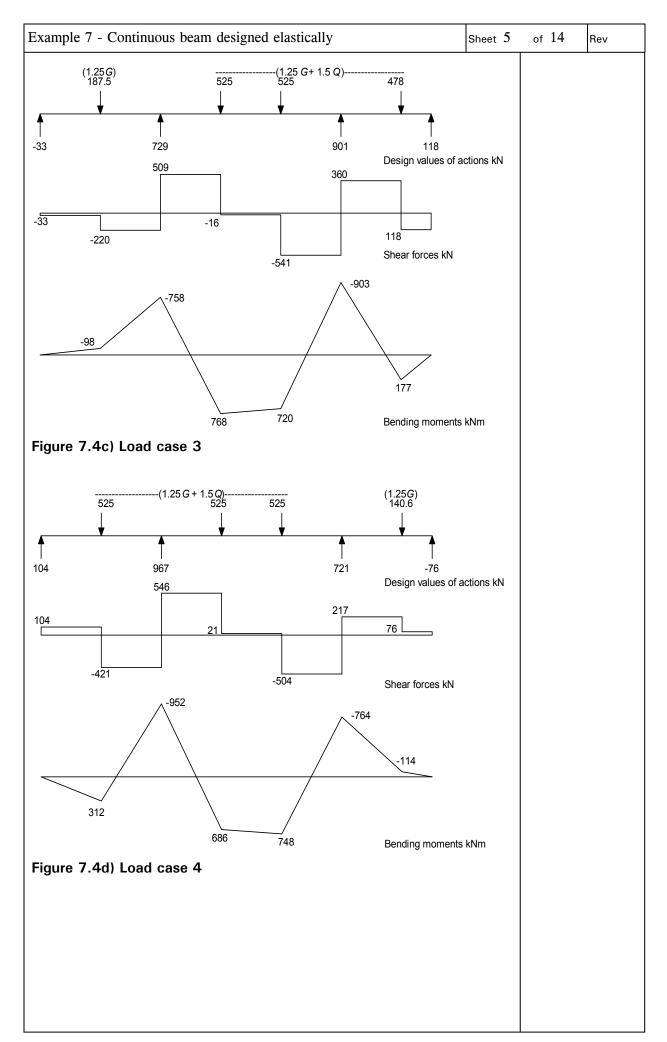
| 1   | 2               | 3    | 4    | 5    | 6    | 7 8  |
|-----|-----------------|------|------|------|------|------|
| I   |                 |      | I    | I    | Ī    | I    |
| 3   | <sup>3000</sup> | 3000 | 3000 | 3000 | 3000 | 3000 |
| <── | 6000            |      |      | 9000 | ×    | 4500 |

### Figure 7.1

The design aspects covered in this example are:


- Cross section classification
- Cross sectional resistance:
  - Shear buckling
  - Shear
  - Bending moment
- Buckling resistance
  - Lateral torsional buckling resistance


The resistance of the web to transverse forces is not considered in this example.


Calculations for the verification of the vertical deflection of the beam under serviceability limit state loading are not given.

References are to BS EN 1993-1-1: 2005, including its National Annex, unless otherwise stated.

| Example 7 - Continuous beam designed elasticallyShear 2of 14Rev <b>7.2 Actions (loading)</b> For simplicity, all actions (including the beam self weight) are considered as concentrated loads acting at the eight numbered locations. Only the forces at 2, 4, 5 and 7 give rise to bending moments and shear forces. $\overbrace{000}^{000}$ $\overbrace{0100}^{000}$ $\overbrace{000}^{000}$ $\overbrace{000}^{000}$ $\overbrace{000}^{000}$ <td colsp<="" th=""><th>Example 7 -</th><th>- Continuou</th><th>s beam des</th><th>signed elasti</th><th>cally</th><th></th><th>Sheet 2</th><th>of 14</th><th>Rev</th></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <th>Example 7 -</th> <th>- Continuou</th> <th>s beam des</th> <th>signed elasti</th> <th>cally</th> <th></th> <th>Sheet 2</th> <th>of 14</th> <th>Rev</th> | Example 7 -                                                             | - Continuou              | s beam des                   | signed elasti              | cally        |                      | Sheet 2 | of 14 | Rev |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------|------------------------------|----------------------------|--------------|----------------------|---------|-------|-----|--|
| For simplicity, all actions (including the beam self weight) are considered as concentrated loads acting at the eight numbered locations. Only the forces at 2, 4, 5 and 7 give rise to bending moments and shear forces.<br>$\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                            |                                                                         |                          |                              |                            |              |                      |         |       |     |  |
| concentrated loads acting at the eight numbered locations. Only the forces at 2, 4, 5 and 7 give rise to bending moments and shear forces.<br>$\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.2 A                                                                                                                                                      |                                                                         |                          |                              |                            |              |                      |         |       |     |  |
| 2, 4, 5 and 7 give rise to bending moments and shear forces.<br>$\begin{array}{c} 3000 \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                          |                                                                         |                          |                              |                            |              |                      |         |       |     |  |
| $\begin{array}{c} \hline & \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                            |                                                                         |                          |                              |                            |              | e forces at          |         |       |     |  |
| $\begin{array}{c} \hline \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            | -                                                                       | -                        |                              | ind shear r                |              |                      |         |       |     |  |
| VVV $\overline{\mathcal{C}}$ $\overline{\mathcal{C}}$ $\overline{\mathcal{C}}$ $\overline{\mathcal{C}}$ Figure 7.2Only the combined actions given by Expression 6.10b are considered here, see<br>Section 2.2.4 of Example 2.EN 1990 allows permanent actions to be considered as favourable or<br>unfavourable.Note 2 to Table NA.A1.2(B) of the UK National Annex BS EN 1990 states<br>that "The characteristic values of all permanent actions from one source are<br>multiplied by $\gamma_{i,sup}$ if the total resulting action effect is unfavourable and $\gamma_{i,inf}$<br>if the total resulting action effect is favourable."The permanent actions considered here are due to the self weight of the<br>structure, therefore they should be considered as actions from one source. $\gamma_{0,sup} = 1.25$ and $\gamma_{0,imf} = 1.0$<br>$\gamma_0 = 1.5$ BS EN 1990<br>Table<br>NA.A1.2(B)For combination 6.10b the design values are given by: $F_{G,sup,G} = 0.925 \times 1.35G = 1.25G$ (Unfavourable) $F_{Q,a} = \gamma_{Q}Q = 1.5Q$ The values at each location are tabulated below. $\overline{V}_{a,mg} G = 1.0G$ (Favourable) $F_{Q,d} = \gamma_{Q}Q = 1.5Q$ The values at each location are tabulated below. $\overline{V}_{a,imf} G = 1.0G$ (Favourable) $F_{Q,d} = \gamma_{Q}Q = 1.5Q$ The values at each location are tabulated below. $\overline{V}_{a,img} G = 2.0G$ ( $\overline{V}_{a,img} G / QQ$ ( $\overline{V}_{a,imf} G / QQ$ ) $\overline{V}_{a,img} G = 2.0G$ ( $\overline{V}_{a,img} G / QQ$ ( $\overline{V}_{a,imf} G / QQ$ ) $\overline{V}_{a,img} G $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 3000                                                                                                                                                     | *                                                                       | 6000                     | → <sup>3000</sup>            | *                          | 6000         | →< <sup>1500</sup> > |         |       |     |  |
| $3000$ $4500$ Figure 7.2Only the combined actions given by Expression 6.10b are considered here, see<br>Section 2.2.4 of Example 2.EN 1990 allows permanent actions to be considered as favourable or<br>unfavourable.Note 2 to Table NA.A1.2(B) of the UK National Annex BS EN 1990 states<br>that "The characteristic values of all permanent actions from one source are<br>multiplied by $\gamma_{G,sup}$ if the total resulting action effect is unfavourable and $\gamma_{G,inf}$<br>if the total resulting action effect is favourable."The permanent actions considered here are due to the self weight of the<br>structure, therefore they should be considered as actions from one source. $\gamma_{G,sup} = 1.25$ and $\gamma_{G,inf} = 1.0$<br>$\gamma_0 = 1.5$ BS EN 1990<br>Table<br>NA.A1.2(B)For combination 6.10b the design values are given by: $F_{G,sup}G = 0.925 \times 1.35G = 1.25G$ (Unfavourable) $F_{G,aup}G = f \gamma_{G,aup}G = 0.925 \times 1.35G = 1.25G$ (Unfavourable) $F_{Q,d} = \gamma_0 Q = 1.5Q$ The values at each location are tabulated below.Improvement to the self weight of the set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                          | •                                                                       | 3                        | •                            | •                          | 6            | ®                    |         |       |     |  |
| $3000$ $4500$ Figure 7.2Only the combined actions given by Expression 6.10b are considered here, see<br>Section 2.2.4 of Example 2.EN 1990 allows permanent actions to be considered as favourable or<br>unfavourable.Note 2 to Table NA.A1.2(B) of the UK National Annex BS EN 1990 states<br>that "The characteristic values of all permanent actions from one source are<br>multiplied by $\gamma_{G,sup}$ if the total resulting action effect is unfavourable and $\gamma_{G,inf}$<br>if the total resulting action effect is favourable."The permanent actions considered here are due to the self weight of the<br>structure, therefore they should be considered as actions from one source. $\gamma_{G,sup} = 1.25$ and $\gamma_{G,inf} = 1.0$<br>$\gamma_0 = 1.5$ BS EN 1990<br>Table<br>NA.A1.2(B)For combination 6.10b the design values are given by: $F_{G,sup,d} = \varepsilon \gamma_{G,sup} G = 0.925 \times 1.35 G = 1.25 G$ (Unfavourable) $F_{G,inf,d} = \gamma_{G,inf} G = 1.0 G$ (Favourable) $F_{Q,d} = \varepsilon \gamma_{G,sup} G = 0.925 \times 1.35 G = 1.25 G$ (Unfavourable) $F_{Q,d} = \gamma_0 Q = 1.5 Q$ The values at each location are tabulated below.Implementations (kN)<br>Tations (kN)<br>UnfavourableLocation $\overline{Q}$ $\overline{V_{Q,ung}} \overline{V_{QQ}}$ $\overline{V_{QQ}}$ $2$ $150.0$ $225.0$ $187.5$ $337.5$ $5$ $150.0$ $225.0$ $187.5$ $337.5$ $5$ $150.0$ $225.0$ $187.5$ $337.5$ $150.0$ $237.5$ <td><b>A</b></td> <td><u></u></td> <td>•</td> <td>(4)</td> <td></td> <td><b></b></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>A</b>                                                                                                                                                   | <u></u>                                                                 | •                        | (4)                          |                            | <b></b>      |                      |         |       |     |  |
| Only the combined actions given by Expression 6.10b are considered here, see<br>Section 2.2.4 of Example 2.EN 1990 allows permanent actions to be considered as favourable or<br>unfavourable.Note 2 to Table NA.A1.2(B) of the UK National Annex BS EN 1990 states<br>that "The characteristic values of all permanent actions from one source are<br>multiplied by $\gamma_{G,sup}$ if the total resulting action effect is unfavourable and $\gamma_{G,inf}$<br>if the total resulting action effect is unfavourable and $\gamma_{G,inf}$<br>if the total resulting action effect is unfavourable and $\gamma_{G,inf}$<br>if the total resulting action effect as actions from one source.BS EN 1990<br>Table<br>NA.A1.2(B)The permanent actions considered here are due to the self weight of the<br>structure, therefore they should be considered as actions from one source. $\gamma_{G,sup} = 1.25$ and $\gamma_{G,inf} = 1.0$<br>$\gamma_Q = 1.5$ BS EN 1990<br>Table<br>NA.A1.2(B)For combination 6.10b the design values are given by: $F_{G,sup,G} = 0.925 \times 1.35 G = 1.25 G$ (Unfavourable) $F_{G,inf,G} = \gamma_{G,inf,G} = 1.0 G$ (Favourable) $F_{Q,d} = \gamma_Q Q = 1.5 Q$ The values at each location are tabulated below.Image: Characteristic values of actions (kN)<br>unfavourable $V_{Q,Q} = 1.5Q$ The values of actionsDesign values of values of actions (kN)<br>unfavourable $V_{Q,Q} = 1.5Q$ The values at each location are tabulated below.Image: Characteristic values of $V_{Q,Q} = \frac{V_{Q,Q}}{V_{G,im}G} = \frac{V_{Q}Q}{Q_{Q}}$ $V_{Q,Q} = 1.5Q$ <td colsp<="" td=""><td>- 6</td><td></td><td>~</td><td>-</td><td></td><td></td><td></td><td></td><td></td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <td>- 6</td> <td></td> <td>~</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                             | - 6                                                                     |                          | ~                            | -                          |              |                      |         |       |     |  |
| Section 2.2.4 of Example 2.<br>EN 1990 allows permanent actions to be considered as favourable or<br>unfavourable.<br>Note 2 to Table NA.A1.2(B) of the UK National Annex BS EN 1990 states<br>that "The characteristic values of all permanent actions from one source are<br>multiplied by $\gamma_{G,sup}$ if the total resulting action effect is unfavourable and $\gamma_{G,inf}$<br>if the total resulting action effect is favourable."<br>The permanent actions considered here are due to the self weight of the<br>structure, therefore they should be considered as actions from one source.<br>$\gamma_{G,sup} = 1.25$ and $\gamma_{G,inf} = 1.0$<br>$\gamma_Q = 1.5$<br>For combination 6.10b the design values are given by:<br>$F_{G,sup,d} = \varepsilon \gamma_{G,sup} G = 0.925 \times 1.35 G = 1.25 G$ (Unfavourable)<br>$F_{Q,d} = \gamma_Q Q = 1.5Q$<br>The values at each location are tabulated below.<br>$\frac{\frac{Characteristic}{(kN)} \frac{Design values of}{actions (kN)} \frac{Design values of}{actions (kN)}$ $\frac{Location}{(kN)} \frac{G}{(kN)} \frac{P_{G,inf} G}{V_Q Q} \frac{\gamma_{G,inf} G}{\gamma_Q Q} \frac{\gamma_Q Q}{2}$ $\frac{150.0}{225.0} \frac{187.5}{337.5} \frac{337.5}{150.0} \frac{337.5}{337.5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Figure 7.2                                                                                                                                                 | 2                                                                       |                          |                              |                            |              | -                    |         |       |     |  |
| unfavourable.<br>Note 2 to Table NA.A1.2(B) of the UK National Annex BS EN 1990 states<br>that "The characteristic values of all permanent actions from one source are<br>multiplied by $\gamma_{G,sup}$ if the total resulting action effect is unfavourable and $\gamma_{G,inf}$<br>if the total resulting action effect is favourable."<br>The permanent actions considered here are due to the self weight of the<br>structure, therefore they should be considered as actions from one source.<br>$\gamma_{G,sup} = 1.25$ and $\gamma_{G,inf} = 1.0$<br>$\gamma_Q = 1.5$<br>For combination 6.10b the design values are given by:<br>$F_{G,sup,d} = \varepsilon \gamma_{G,sup} G = 0.925 \times 1.35 G = 1.25 G$ (Unfavourable)<br>$F_{G,inf,d} = \gamma_{Q,Q} = 1.5 Q$<br>The values at each location are tabulated below.<br>$\frac{Characteristic}{Values of actions} \frac{Design values of}{actions (kN)} \frac{Design values of}{actions (kN)}$ $\frac{Characteristic}{(kN)} \frac{Design values of}{Design values of} \frac{Design values of}{actions (kN)}$ $\frac{Location}{Q} \frac{Q}{2} \frac{\varepsilon \gamma_{G,sup} G}{\gamma_{Q,Q}} \frac{\gamma_{Q,Q}}{\gamma_{G,inf}} \frac{\gamma_{Q,Q}}{\gamma_{Q,Q}}$ $\frac{2}{150.0} \frac{225.0}{225.0} \frac{187.5}{337.5} \frac{150.0}{337.5} \frac{337.5}{150.0} \frac{337.5}{337.5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                          |                                                                         | -                        | by Express                   | ion 6.10b a                | are consider | ed here, see         |         |       |     |  |
| that "The characteristic values of all permanent actions from one source are<br>multiplied by $\gamma_{G,sup}$ if the total resulting action effect is unfavourable and $\gamma_{G,inf}$<br>if the total resulting action effect is favourable."<br>The permanent actions considered here are due to the self weight of the<br>structure, therefore they should be considered as actions from one source.<br>$\gamma_{G,sup} = 1.25$ and $\gamma_{G,inf} = 1.0$<br>$\gamma_Q = 1.5$<br>For combination 6.10b the design values are given by:<br>$F_{G,sup,d} = \varepsilon \gamma_{G,sup} G = 0.925 \times 1.35 G = 1.25 G$ (Unfavourable)<br>$F_{G,inf,d} = \gamma_{G,inf} G = 1.0 G$ (Favourable)<br>$F_{Q,d} = \gamma_Q Q = 1.5 Q$<br>The values at each location are tabulated below.<br>$\boxed{\begin{array}{c c c c c } \hline Characteristic & Design values of & actions (kN) & actions (kN) \\ Vnfavourable & Favourable \\ \hline Location & G & Q & \varepsilon \gamma_{G,sup} G & \gamma_Q Q & \gamma_{G,inf} G & \gamma_Q Q \\ \hline 2 & 150.0 & 225.0 & 187.5 & 337.5 & 150.0 & 337.5 \\ \hline 5 & 150.0 & 225.0 & 187.5 & 337.5 & 150.0 & 337.5 \\ \hline 5 & 150.0 & 225.0 & 187.5 & 337.5 & 150.0 & 337.5 \\ \hline \end{array}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                            | -                                                                       | anent actior             | is to be con                 | sidered as                 | favourable   | or                   |         |       |     |  |
| structure, therefore they should be considered as actions from one source.<br>$\begin{split} \gamma_{G, \sup} &= 1.25 \text{ and } \gamma_{G, \inf} = 1.0 \\ \gamma_Q &= 1.5 \end{split}$ For combination 6.10b the design values are given by:<br>$F_{G, \sup, d} &= \varepsilon \gamma_{G, \sup} G = 0.925 \times 1.35 G = 1.25 G \text{ (Unfavourable)} \\ F_{G, \inf, d} &= \gamma_{G, \inf} G = 1.0 G \text{ (Favourable)} \\ F_{Q,d} &= \gamma_Q Q = 1.5 Q \\ The values at each location are tabulated below. \end{split}$ $\begin{split} \hline & \frac{\text{Characteristic}}{(kN)} \frac{\text{Design values of}}{(kN)} \frac{\text{Design values of}}{(kN)} \frac{\text{actions } (kN)}{(kN)} \frac{\text{Characteristic}}{(kN)} \frac{\text{Design values of}}{(kN)} \frac{10 \text{ favourable}}{(kN)} \frac{150.0  225.0  187.5  337.5  150.0  337.5}{(5  150.0  225.0  187.5  337.5  150.0  337.5} \\ \hline & 5  150.0  225.0  187.5  337.5  150.0  337.5 \\ \hline & 5  150.0  225.0  187.5  337.5  150.0  337.5 \\ \hline & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | that "The c<br>multiplied b                                                                                                                                | haracteristic<br>by $\gamma_{G,sup}$ if t                               | c values of he total res | all permane<br>ulting action | ent actions<br>n effect is | from one s   | ource are            |         |       |     |  |
| $\begin{split} & \begin{array}{l} & \begin{array}{l} Table \\ & \gamma_{Q} \end{array} = 1.5 \end{array} \\ & \begin{array}{l} & Table \\ & \text{NA.A1.2(B)} \end{array} \\ & \begin{array}{l} & \text{For combination 6.10b the design values are given by:} \\ & F_{G, \text{sup,d}} \end{array} = \varepsilon \gamma_{G, \text{sup}} G = 0.925 \times 1.35 G = 1.25 G \ (\text{Unfavourable}) \end{array} \\ & \begin{array}{l} & F_{G, \text{inf,d}} \end{array} = \gamma_{G, \text{inf}} G = 1.0 G \ (\text{Favourable}) \end{array} \\ & \begin{array}{l} & F_{Q, \text{d}} \end{array} = \gamma_{Q} Q = 1.5 Q \end{array} \\ & \begin{array}{l} & \text{Table } \\ & \text{NA.A1.2(B)} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \text{Table } \\ & \text{NA.A1.2(B)} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \text{Table } \\ & \text{NA.A1.2(B)} \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \text{Table } \\ & \text{NA.A1.2(B)} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \text{Table } \\ & \text{NA.A1.2(B)} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \text{Table } \\ & \text{NA.A1.2(B)} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \text{Table } \\ & \text{NA.A1.2(B)} \end{array} \\ & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \text{Table } \\ & \text{NA.A1.2(B)} \end{array} \\ & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \text{Table } \\ & \text{NA.A1.2(B)} \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ \\ & \begin{array}{l} & \end{array} \end{array} $ \\ & \begin{array}{l} & \end{array} \end{array} \\ \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \\ & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ \\ & \begin{array}{l} & \end{array} \end{array} \\ \\ & \begin{array}{l} & \end{array} \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ \\ & \begin{array}{l} & \end{array} \end{array} \\ \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ \\ & \begin{array}{l} & \end{array} \end{array} \\ \\ & \begin{array}{l} & \end{array} \end{array} \\ \end{array} \\ \end{array}  \\ \\ & \begin{array}{l} & \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array}  \\ \end{array}  \\ & \begin{array}{l} & \end{array} \end{array} \\ \\ & \begin{array}{l} & \end{array} \end{array} \\ \\ & \begin{array}{l} | -                                                                                                                                                          | The permanent actions considered here are due to the self weight of the |                          |                              |                            |              |                      |         |       |     |  |
| $\gamma_{Q} = 1.5$ For combination 6.10b the design values are given by:<br>$F_{G,sup,d} = \varepsilon \gamma_{G,sup} G = 0.925 \times 1.35 G = 1.25 G \text{ (Unfavourable)}$ $F_{G,inf,d} = \gamma_{G,inf} G = 1.0 G \text{ (Favourable)}$ $F_{Q,d} = \gamma_{Q} Q = 1.5 Q$ The values at each location are tabulated below.<br>$\boxed{\begin{array}{c c} Characteristic \\ values of actions \\ (kN) \\ (kN) \\ \hline Unfavourable \\ \hline Location \\ G \\ 2 \\ 150.0 \\ 225.0 \\ 5 \\ 5 \\ 5 \\ 5 \\ 150.0 \\ 225.0 \\ 187.5 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\gamma_{G,sup} =$                                                                                                                                         | BS EN 1                                                                 | 990                      |                              |                            |              |                      |         |       |     |  |
| $F_{G,sup,d} = \varepsilon \gamma_{G,sup} G = 0.925 \times 1.35 G = 1.25 G \text{ (Unfavourable)}$ $F_{G,inf,d} = \gamma_{G,inf} G = 1.0 G \text{ (Favourable)}$ $F_{Q,d} = \gamma_Q Q = 1.5 Q$ The values at each location are tabulated below. $\frac{\text{Characteristic}}{\text{values of actions}} \frac{\text{Design values of}}{\text{actions (kN)}} \frac{\text{Design values of}}{\text{actions (kN)}}$ $\frac{\text{Location}}{G} \frac{Q}{Q} \frac{\varepsilon \gamma_{G,sup} G}{\gamma_{G,sup} G} \frac{\gamma_Q Q}{\gamma_{G,inf} G} \frac{\gamma_Q Q}{\gamma_Q Q}}{\frac{2}{150.0} \frac{225.0}{225.0} \frac{187.5}{337.5} \frac{337.5}{150.0} \frac{150.0}{337.5}}{150.0} \frac{337.5}{337.5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | γ <sub>Q</sub> =                                                                                                                                           |                                                                         | (B)                      |                              |                            |              |                      |         |       |     |  |
| $F_{G,inf,d} = \gamma_{G,inf} G = 1.0 G \text{ (Favourable)}$ $F_{Q,d} = \gamma_Q Q = 1.5 Q$ The values at each location are tabulated below. $\boxed{\begin{array}{c c} Characteristic \\ values of actions \\ (kN) \\ (kN) \\ \hline \\ Location \\ G \\ 2 \\ 150.0 \\ 225.0 \\ 187.5 \\ 337.5 \\ \hline \\ 5 \\ 150.0 \\ 225.0 \\ 187.5 \\ 337.5 \\ 150.0 \\ 337.5 \\ \hline \\ \end{array}}} \underbrace{\begin{array}{c c} Characteristic \\ Design values of \\ actions (kN) \\ Favourable \\ Favourable \\ \hline \\ Favourable \\ \hline \\ V_Q Q \\ \gamma_{G,inf} G \\ \gamma_Q Q \\ \gamma_{Q,inf} G \\ \gamma_Q Q \\ \hline \\ 2 \\ 150.0 \\ 327.5 \\ \hline \\ 5 \\ 150.0 \\ 325.0 \\ 187.5 \\ 337.5 \\ 150.0 \\ 337.5 \\ \hline \end{array}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For combin                                                                                                                                                 | For combination 6.10b the design values are given by:                   |                          |                              |                            |              |                      |         |       |     |  |
| $F_{G,inf,d} = \gamma_{G,inf} G = 1.0 G \text{ (Favourable)}$ $F_{Q,d} = \gamma_Q Q = 1.5 Q$ The values at each location are tabulated below. $\boxed{\begin{array}{c c} Characteristic \\ values of actions \\ (kN) \\ (kN) \\ \hline \\ Location \\ G \\ 2 \\ 150.0 \\ 225.0 \\ 187.5 \\ 337.5 \\ 5 \\ 150.0 \\ 225.0 \\ 187.5 \\ 337.5 \\ 150.0 \\ 337.5 \\ 150.0 \\ 337.5 \\ \hline \end{array}}} \overbrace{\begin{array}{c} Design values of \\ actions (kN) \\ Favourable \\ Favourable \\ \hline \\ Pavourable \\ \hline \\ \hline \\ Pavourable \\ \hline \\ \hline \\ Pavourable \\ \hline \\ Pavourable \\ \hline \\ \hline \\ \hline \\ Pavourable \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $F_{G,sup,d} =$                                                                                                                                            |                                                                         |                          |                              |                            |              |                      |         |       |     |  |
| The values at each location are tabulated below.Characteristic<br>values of actions<br>(kN)Design values of<br>actions (kN)Design values of<br>actions (kN)Location $G$ $Q$ $\varepsilon \gamma_{G,sup} G$ $\gamma_Q Q$ $\gamma_{G,inf} G$ $\gamma_Q Q$ 2150.0225.0187.5337.5150.0337.54150.0225.0187.5337.5150.0337.55150.0225.0187.5337.5150.0337.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                            |                                                                         |                          |                              |                            |              |                      |         |       |     |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $F_{Q,d}$ =                                                                                                                                                | $F_{\text{O,d}} = \gamma_{\text{O}} Q = 1.5 Q$                          |                          |                              |                            |              |                      |         |       |     |  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The values at each location are tabulated below.                                                                                                           |                                                                         |                          |                              |                            |              |                      |         |       |     |  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                            |                                                                         |                          | •                            |                            | U            |                      |         |       |     |  |
| $\begin{array}{ c c c c c c c c c } \hline Location & G & Q & \varepsilon \gamma_{G,sup} G & \gamma_Q Q & \gamma_{G,inf} G & \gamma_Q Q \\ \hline 2 & 150.0 & 225.0 & 187.5 & 337.5 & 150.0 & 337.5 \\ \hline 4 & 150.0 & 225.0 & 187.5 & 337.5 & 150.0 & 337.5 \\ \hline 5 & 150.0 & 225.0 & 187.5 & 337.5 & 150.0 & 337.5 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                            |                                                                         |                          |                              | . ,                        |              |                      |         |       |     |  |
| 2         150.0         225.0         187.5         337.5         150.0         337.5           4         150.0         225.0         187.5         337.5         150.0         337.5           5         150.0         225.0         187.5         337.5         150.0         337.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Location                                                                                                                                                   |                                                                         |                          |                              |                            |              |                      |         |       |     |  |
| 5 150.0 225.0 187.5 337.5 150.0 337.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                          |                                                                         |                          |                              |                            |              |                      |         |       |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                         |                          |                              |                            |              |                      |         |       |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                         |                          |                              |                            |              |                      |         |       |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                   |                                                                         |                          |                              |                            |              |                      |         |       |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                         |                          |                              |                            |              |                      |         |       |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                         |                          |                              |                            |              |                      |         |       |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                         |                          |                              |                            |              |                      |         |       |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                         |                          |                              |                            |              |                      |         |       |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |                                                                         |                          |                              |                            |              |                      |         |       |     |  |







|                                                                                                | ed elastically                           | Sheet 6              | of 14 Rev                |
|------------------------------------------------------------------------------------------------|------------------------------------------|----------------------|--------------------------|
| 7.4 Section properties                                                                         |                                          |                      |                          |
| Try 686 × 254 × 125 UKB in S275                                                                |                                          |                      |                          |
| Depth                                                                                          | h = 677.9                                | mm                   | P363                     |
| Width                                                                                          | b = 253.0                                | mm                   |                          |
| Web thickness                                                                                  | $t_{\rm w} = 11.7 {\rm m}$               | nm                   |                          |
| Flange thickness                                                                               | $t_{\rm f}$ = 16.2 m                     | nm                   |                          |
| Root radius                                                                                    | r = 15.2  m                              | nm                   |                          |
| Depth between fillets                                                                          | d = 615.1                                | mm                   |                          |
| Second moment of area y axis                                                                   | $I_{\rm y}$ = 118 00                     | $00 \text{ cm}^4$    |                          |
| Second moment of area z axis                                                                   | $I_z = 4 380$                            | cm <sup>4</sup>      |                          |
| Radius of gyration y axis                                                                      | $i_{y} = 27.20$                          | cm                   |                          |
| Radius of gyration z axis                                                                      | $i_z = 5.24 c$                           | m                    |                          |
| Plastic modulus y axis                                                                         | $W_{\rm pl,y} = 3 \ 990$                 | cm <sup>3</sup>      |                          |
| Plastic modulus z axis                                                                         | $W_{\rm pl,z} = 542 \ {\rm cm}$          |                      |                          |
| Elastic modulus y axis                                                                         | $W_{\rm el,y} = 3 \ 480$                 | cm <sup>3</sup>      |                          |
| Elastic modulus z axis                                                                         | $W_{\rm el,z} = 346  {\rm cm}$           | n <sup>3</sup>       |                          |
| Area                                                                                           | A = 159  cm                              | $n^2$                |                          |
| Modulus of elasticity                                                                          | $E = 210\ 00$                            | 00 N/mm <sup>2</sup> | 3.2.6(1)                 |
| For S275 steel and $16 < t \le 60 \text{ mm}$<br>Yield strength $f_y = R_{eH} = 265 \text{ M}$ | J/mm <sup>2</sup>                        |                      | BS EN 10025-2<br>Table 7 |
| 7.5 Cross section clas                                                                         | sification                               |                      |                          |
| $\varepsilon = \sqrt{\frac{235}{f_{y}}} = \sqrt{\frac{235}{265}} = 0.94$                       |                                          |                      | Table 5.2                |
| Outstand of compression flange                                                                 |                                          |                      | Table 5.2                |
| $c = \frac{b - t_{w} - 2r}{2} = \frac{253 - 16.2 - 2}{2}$                                      | $-(2 \times 15.2) = 103.2$               |                      |                          |
|                                                                                                |                                          |                      |                          |
| $\frac{c}{t_{\rm f}} = \frac{103.2}{16.2} = 6.37$                                              |                                          |                      |                          |
| The limiting value for Class 1 is $\frac{c}{c}$                                                | $\leq 9\varepsilon = 9 \times 0.94 = 8.$ | .46                  |                          |
| $t_{\rm f}$                                                                                    |                                          |                      |                          |
| $t_{ m f}$                                                                                     |                                          |                      |                          |
| 6.37 < 8.46                                                                                    | is Class 1                               |                      |                          |
| $t_{\rm f}$<br>6.37 < 8.46<br>Therefore, the flange in compression                             | is Class 1                               |                      |                          |
| 6.37 < 8.46                                                                                    | is Class 1                               |                      |                          |

| Example 7 - Continuous beam designed elastically                                                       | Sheet 7 | of 14                 | Rev     |
|--------------------------------------------------------------------------------------------------------|---------|-----------------------|---------|
| Web subject to bending                                                                                 |         |                       |         |
| c = d = 615.1  mm                                                                                      |         |                       |         |
| $\frac{c}{t_{\rm w}} = \frac{615.1}{11.7} = 52.57$                                                     |         |                       |         |
| The limiting value for Class 1 is $\frac{c}{t_{\rm f}} \le 72 \varepsilon = 72 \times 0.94 = 67.68$    |         |                       |         |
| 52.57 < 67.68                                                                                          |         |                       |         |
| Therefore, the web is Class 1 under bending.                                                           |         |                       |         |
| Therefore the cross section is Class 1 under bending.                                                  |         |                       |         |
| 7.6 Partial factors for resistance                                                                     |         |                       |         |
| $\gamma_{M0} = 1.0$                                                                                    |         | NA.2.15               |         |
| $\gamma_{\rm M1} = 1.0$                                                                                |         |                       |         |
| 7.7 Cross-sectional resistance                                                                         |         |                       |         |
| 7.7.1 Shear buckling                                                                                   |         |                       |         |
| The shear buckling resistance for webs should be verified according to Section 5 of BS EN 1993-1-5 if: |         | 6.2.6(6)              |         |
| $\frac{h_{\rm w}}{t_{\rm w}} > 72 \frac{\varepsilon}{\eta}$                                            |         | Eq (6.23)             |         |
| $\eta = 1.0$                                                                                           |         | BS EN 19              | 993-1-5 |
| $h_{\rm w} = h - 2t_{\rm f} = 677.9 - (2 \times 16.2) = 645.50 \text{ mm}$                             |         | NA.2.4                |         |
| $\frac{h_{\rm w}}{t_{\rm w}} = \frac{645.50}{11.7} = 55.17$                                            |         |                       |         |
| $72\frac{\varepsilon}{\eta} = 72 \times \frac{0.94}{1.0} = 67.68$                                      |         |                       |         |
| 55.17 < 67.68                                                                                          |         |                       |         |
| Therefore the shear buckling resistance of the web does not need to be verified.                       |         |                       |         |
| 7.7.2 Shear resistance                                                                                 |         |                       |         |
| Verify that                                                                                            |         | 6.2.6(1)              |         |
| $\frac{V_{\rm Ed}}{V_{\rm c,Rd}} \le 1.0$                                                              |         | Eq (6.17)             |         |
| For Class 1 and 2 cross sections                                                                       |         |                       |         |
| $V_{\rm c,Rd} = V_{\rm pl,Rd}$                                                                         |         |                       |         |
| $V_{\rm pl,Rd} = \frac{A_{\rm v} \left(f_{\rm y} / \sqrt{3}\right)}{\gamma_{\rm M0}}$                  |         | 6.2.6(2)<br>Eq (6.18) |         |
| γм0                                                                                                    |         | 1 (                   |         |

| Example 7 - Continuous beam designed elastically                                                                                                                 | Sheet 8           | of 14                 | Rev |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|-----|
| $A_{v}$ is the shear area and is determined as follows for rolled I and H sect                                                                                   |                   |                       | 1   |
| $M_{v}$ is the shear area and is determined as follows for follow rand if see,<br>with the load applied parallel to the web.                                     | .10115            |                       |     |
| $A_{\rm v} = A - 2 b t_{\rm f} + t_{\rm f} (t_{\rm w} + 2 r)$ but not less than $\eta h_{\rm w} t_{\rm w}$                                                       |                   | 6.2.6(3)              |     |
| $= 159 \times 10^{2} - (2 \times 253 \times 16.2) + 16.2 \times (11.7 + (2 \times 15.2)) = 8384.82$                                                              | 2 mm <sup>2</sup> |                       |     |
| $\eta h_{\rm w} t_{\rm w} = 1.0 \times 645.5 \times 11.7 = 7552.35 \rm{mm}^2$                                                                                    |                   |                       |     |
| 8384.82 > 7552.35                                                                                                                                                |                   |                       |     |
| Therefore, $A_{\nu} = 8384.82 \text{ mm}^2$                                                                                                                      |                   |                       |     |
| The design plastic shear resistance is:                                                                                                                          |                   | 6.2.6(2)              |     |
| $V_{\text{pl,Rd}} = \frac{A_{\text{v}}(f_{\text{y}}/\sqrt{3})}{\gamma_{\text{M0}}} = \frac{8384.82 \times (265/\sqrt{3})}{1.0} \times 10^{-3} = 1283 \text{ kN}$ |                   | Eq (6.18)             |     |
| Maximum design shear $V_{\rm Ed} = 546$ kN                                                                                                                       |                   | Sheet 5               |     |
| $\frac{V_{\rm Ed}}{V_{\rm c,Rd}} = \frac{546}{1283} = 0.43 < 1.0$                                                                                                |                   |                       |     |
| Therefore the shear resistance of the section is adequate.                                                                                                       |                   |                       |     |
| 7.7.3 Resistance to bending                                                                                                                                      |                   |                       |     |
| Verify that:                                                                                                                                                     |                   | 6.2.5(1)              |     |
| $\frac{M_{\rm Ed}}{M_{\rm c,Rd}} \le 1.0$                                                                                                                        |                   | Eq (6.12)             |     |
| At the point of maximum bending moment (mid-span), check if the shea<br>will reduce the bending moment resistance of the section.                                | ar force          |                       |     |
| $\frac{V_{\rm c,Rd}}{2} = \frac{1283}{2} = 641.5 \text{ kN}$                                                                                                     |                   |                       |     |
| Shear force at maximum bending moment $V_{\rm Ed} = 546$ kN                                                                                                      |                   | Sheet 5               |     |
| 546  kN < 641.5  kN                                                                                                                                              |                   |                       |     |
| Therefore no reduction in resistance to bending due to shear is required                                                                                         | d.                |                       |     |
| The design resistance for bending for Class 1 and 2 cross-sections is:                                                                                           |                   | 6.2.5(2)              |     |
| $M_{\rm c,Rd} = M_{\rm pl,Rd} = \frac{W_{\rm pl,y} f_y}{\gamma_{\rm M0}} = \frac{3990 \times 10^3 \times 265}{1.0} \times 10^{-6} = 1057 \text{ kNm}$            |                   | Eq (6.13)             |     |
| The design bending moment is:                                                                                                                                    |                   | Sheet 5               |     |
| $M_{\rm Ed} = 952 \text{ kNm}$                                                                                                                                   |                   |                       |     |
| $\frac{M_{\rm Ed}}{M_{\rm c,Rd}} = \frac{952}{1057} = 0.90 < 1.0$                                                                                                |                   | 6.2.5(1)<br>Eq (6.12) |     |
| Therefore the bending moment capacity is adequate.                                                                                                               |                   |                       |     |
|                                                                                                                                                                  |                   |                       |     |
|                                                                                                                                                                  |                   |                       |     |
|                                                                                                                                                                  |                   |                       |     |

| Example 7 - Continuous beam designed elastically                                                                                                                                                                                                                                                                                                                                     | Sheet 9  | of 14      | Rev    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|--------|
| <b>7.8 Buckling resistance of the member in be</b><br>With the lower flange of the beam unrestrained along its length, lateral<br>torsional buckling verifications should be performed for the sections su<br>a hogging bending moment (when the lower flange will be in compress                                                                                                    | bject to |            | 1      |
| By inspection of Figure 7.4, it can be seen that the most critical lengths 6 to 7 for load case 1 and 2 to 3 for load case 4.                                                                                                                                                                                                                                                        | s are    |            |        |
| Verify section 6 to 7 for load case 1                                                                                                                                                                                                                                                                                                                                                |          |            |        |
| $ \begin{array}{c} x \\ \hline \\ x \\ \hline \\ x \\ \hline \\ \end{array} \begin{array}{c} 3000 \\ \hline \\ 3000 \end{array} \right) $                                                                                                                                                                                                                                            |          |            |        |
| -820<br>Bending moment kNm                                                                                                                                                                                                                                                                                                                                                           |          |            |        |
| -133                                                                                                                                                                                                                                                                                                                                                                                 |          |            |        |
| $M_{6,\text{Ed}} = -820 \text{ kNm}$ $M_{7,\text{Ed}} = -133 \text{ kNm}$                                                                                                                                                                                                                                                                                                            |          |            |        |
| If the lateral torsional buckling slenderness ( $\overline{\lambda}_{LT}$ ) is less than or equal $\overline{\lambda}_{LT,0}$ the effects of lateral torsional buckling may be neglected, and on cross-sectional resistances apply.                                                                                                                                                  |          | 6.3.2.2(4) | )      |
| The value of $\overline{\lambda}_{LT,0}$ for rolled sections is given by the UK National And $\overline{\lambda}_{LT,0} = 0.4$                                                                                                                                                                                                                                                       | nex as   | NA.2.15    |        |
| $\overline{\lambda}_{\rm LT} = \sqrt{\frac{W_{\rm y} f_{\rm y}}{M_{\rm cr}}}$                                                                                                                                                                                                                                                                                                        |          | 6.3.2.2(1) | )      |
| BS EN 1993-1-1 does not give a method for determining the elastic crit<br>moment for lateral-torsional buckling $(M_{\rm cr})$ . A value for $\overline{\lambda}_{\rm LT}$ can be<br>determined directly without having to calculate $M_{\rm cr}$ . The simplified<br>conservative method given in SCI P362 is used here to determine a value<br>for $\overline{\lambda}_{\rm LT}$ . |          |            |        |
| $\overline{\lambda}_{\rm LT} = \frac{1}{\sqrt{C_1}} 0.9 \overline{\lambda}_{\rm z} \sqrt{\beta}_{\rm w}$                                                                                                                                                                                                                                                                             |          | P362 5.6.  | 2.1(5) |
| $\psi = \frac{M_{7,\text{Ed}}}{M_{6,\text{Ed}}} = \frac{-133}{-820} = 0.16$                                                                                                                                                                                                                                                                                                          |          |            |        |
| Therefore $\frac{1}{\sqrt{C_1}} = 0.79$                                                                                                                                                                                                                                                                                                                                              |          | P362 Tab   | le 5.5 |
| Span length considered                                                                                                                                                                                                                                                                                                                                                               |          |            |        |
| $L_{6.7} = 3000 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                          |          | 6212(1)    |        |
| $\lambda_1 = 93.9\varepsilon = 93.9 \times 0.94 = 88$                                                                                                                                                                                                                                                                                                                                |          | 6.3.1.3(1) | )      |
| $\overline{\lambda}_{z} = \left(\frac{L_{6-7}}{i_{z}}\right) \left(\frac{1}{\lambda_{1}}\right) = \left(\frac{3000}{52.4}\right) \times \left(\frac{1}{88}\right) = 0.65$                                                                                                                                                                                                            |          |            |        |

| Example 7 - Continuous beam designed elastically                                                                                                                                 | Sheet 10 | of 14                   | Rev    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------|--------|
| $\beta_{\rm w} = 1.00$ for Class 1 and 2 sections                                                                                                                                |          |                         |        |
| $\overline{\lambda}_{LT} = \frac{1}{\sqrt{C_1}} 0.9 \overline{\lambda}_z \sqrt{\beta_w} = 0.79 \times 0.9 \times 0.65 \times \sqrt{1} = 0.46$                                    |          | P362 5.6.               | 2.1(5) |
| From the UK National Annex $\overline{\lambda}_{LT,0} = 0.4$                                                                                                                     |          | NA.2.17                 |        |
| 0.46 > 0.4                                                                                                                                                                       |          |                         |        |
| Therefore the resistance to lateral-torsional buckling should be verified.                                                                                                       |          | 6.3.2.2(4)              | )      |
| Verify that:                                                                                                                                                                     |          |                         |        |
| $\frac{M_{\rm Ed}}{M_{\rm b,Rd}} \le 1.0$                                                                                                                                        |          | 6.3.2.1(1)<br>Eq (6.54) | )      |
| The design buckling resistance moment is determined from:                                                                                                                        |          | 6.3.2.1(3)              | )      |
| $M_{\rm b.Rd} = \chi_{\rm LT} W_{\rm y} \frac{f_{\rm y}}{\gamma_{\rm MI}}$                                                                                                       |          | Eq (6.55)               |        |
| $W_{y} = W_{pl,y}$ for Class 1 and 2 cross-sections                                                                                                                              |          |                         |        |
| As a UKB is being considered, the method given in 6.3.2.3 for determine<br>the reduction factor for lateral-torsional buckling ( $\chi_{LT}$ ) of rolled sections<br>used.       | - 1      |                         |        |
| $\chi_{\rm LT} = \frac{1}{\varphi_{\rm LT} + \sqrt{\varphi_{\rm LT}^2 - \beta \overline{\lambda}_{\rm LT}^2}}$ but $\leq 1.0$ and $\leq \frac{1}{\overline{\lambda}_{\rm LT}^2}$ |          | 6.3.2.3(1)<br>Eq (6.57) | )      |
| where:                                                                                                                                                                           |          |                         |        |
| $\Phi_{\rm LT} = 0.5 \left( 1 + \alpha_{\rm LT} \left( \overline{\lambda}_{\rm LT} - \overline{\lambda}_{\rm LT,0} \right) + \beta \overline{\lambda}_{\rm LT}^2 \right)$        |          |                         |        |
| From the UK National Annex $\overline{\lambda}_{LT,0} = 0.4$ and $\beta = 0.75$                                                                                                  |          | NA.2.17                 |        |
| The appropriate buckling curve depends on $h/b$ :                                                                                                                                |          |                         |        |
| $\frac{h}{b} = \frac{677.9}{253.0} = 2.68$                                                                                                                                       |          |                         |        |
| 2 < 2.68 < 3.1, therefore use buckling curve 'c'                                                                                                                                 |          | NA.2.17                 |        |
| For buckling curve 'c' $\alpha_{LT} = 0.49$                                                                                                                                      |          | NA.2.16<br>Table 6.3    | &      |
| $\Phi_{\rm LT} = 0.5 \times (1 + 0.49 \times (0.46 - 0.4) + (0.75 \times 0.46^2)) = 0.59$                                                                                        |          | 6.3.2.2(1)              | )      |
| $\chi_{\rm LT} = \frac{1}{0.59 + \sqrt{0.59^2 - (0.75 \times 0.46^2)}} = 0.98$                                                                                                   |          |                         |        |
| $\frac{1}{\overline{\lambda}_{LT}} = \frac{1}{0.46^2} = 4.73$                                                                                                                    |          |                         |        |
| 0.98 < 1.00 < 4.73                                                                                                                                                               |          |                         |        |
| Therefore                                                                                                                                                                        |          |                         |        |
| $\chi_{\rm LT} = 0.98$                                                                                                                                                           |          |                         |        |
|                                                                                                                                                                                  |          |                         |        |

| Example 7 - Continuous beam designed elastically                                                                                          | Sheet 11 | of 14      | Rev |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-----|
| To account for the shape of the bending moment distribution, $\chi_{LT}$ may modified by the use of a factor 'f'.                         | be       |            |     |
| $\chi_{\rm LT,mod} = \frac{\chi_{\rm LT}}{f}$ but $\chi_{\rm LT,mod} \le 1.0$                                                             |          | Eq (6.58)  |     |
| where:                                                                                                                                    |          |            |     |
| $f = 1 - 0.5 (1 - k_c) \left[ 1 - 2 (\overline{\lambda}_{LT} - 0.8)^2 \right]$ but $f \le 1.0$                                            |          | 6.3.2.3(2) | )   |
| $k_{\rm c} = \frac{1}{\sqrt{C_1}}$                                                                                                        |          | NA.2.18    |     |
| $\frac{1}{\sqrt{C_1}} = 0.79 \text{ (from sheet 9)}$                                                                                      |          |            |     |
| Hence,                                                                                                                                    |          |            |     |
| $k_{\rm c} = 0.79$                                                                                                                        |          |            |     |
| $f = 1 - 0.5 \times (1 - 0.79) \times \left[ 1 - 2 \times (0.46 - 0.8)^2 \right] = 0.92$                                                  |          | 6.3.2.3(2) | )   |
| Therefore,                                                                                                                                |          |            |     |
| $\chi_{\rm LT, mod} = \frac{0.98}{0.92} = 1.07 > 1.0$                                                                                     |          | Eq (6.58)  |     |
| Therefore,                                                                                                                                |          |            |     |
| $\chi_{\rm LT,mod} = 1.0$                                                                                                                 |          |            |     |
| The design buckling resistance moment for this length $(M_{6-7,b,Rd})$ is                                                                 |          | Eq (6.54)  |     |
| $M_{6-7,b,Rd} = \chi_{LT,mod} W_{pl,y} \frac{f_y}{\gamma_{M1}} = 1.0 \times 3990 \times 10^3 \times \frac{265}{1.0} \times 10^{-6} = 105$ | 7 kNm    |            |     |
| $\frac{M_{6,\text{Ed}}}{M_{6-7,b,\text{Rd}}} = \frac{820}{1057} = 0.78 < 1.0$                                                             |          |            |     |
| Therefore the design buckling resistance moment between points 6 and load case 1 is adequate.                                             | 7 for    |            |     |
| Verify length 2 to 3 for load case 4                                                                                                      |          |            |     |
|                                                                                                                                           |          |            |     |
| < <u> </u>                                                                                                                                |          |            |     |
| -952                                                                                                                                      |          |            |     |
|                                                                                                                                           |          |            |     |
| 312 Bending moment kNm                                                                                                                    |          |            |     |
| $M_{2,\rm Ed} = 312 \rm kNm$ $M_{3,\rm Ed} = -952 \rm kNm$                                                                                |          |            |     |
|                                                                                                                                           |          |            |     |
|                                                                                                                                           |          |            |     |

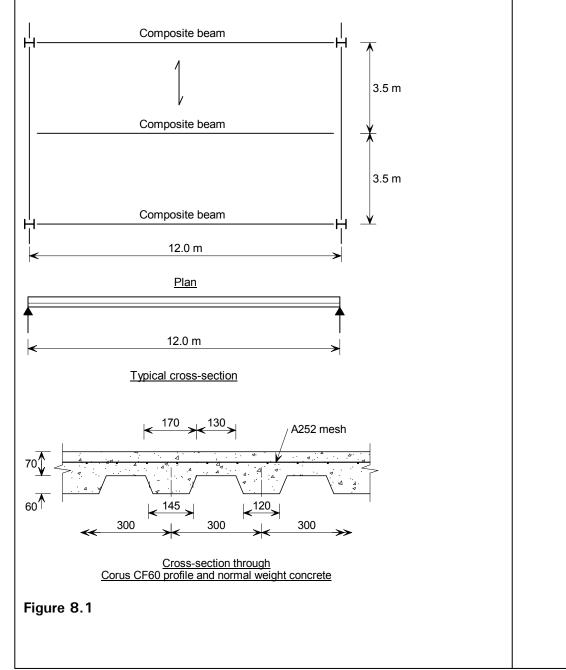
| Example 7 - Continuous beam designed elastically Sheet 12                                                                                                                 | 2 of 14                                         | Rev              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------|
| $\psi = \frac{M_{2,Ed}}{M_{3,Ed}} = \frac{312}{-952} = -0.33$                                                                                                             |                                                 |                  |
| Therefore $\frac{1}{\sqrt{C_1}} = 0.69$                                                                                                                                   | P362 Tat                                        | ole 5.5          |
| Span length considered                                                                                                                                                    |                                                 |                  |
| $L_{2-3} = 3000 \text{ mm}$                                                                                                                                               |                                                 |                  |
| $\lambda_1 = 88$                                                                                                                                                          | Sheet 9                                         |                  |
| $\overline{\lambda}_{z} = \left(\frac{L_{2-3}}{i_{z}}\right) \left(\frac{1}{\lambda_{1}}\right) = \left(\frac{3000}{52.4}\right) \times \left(\frac{1}{88}\right) = 0.65$ |                                                 |                  |
| $\beta_{\rm w} = 1.00$ for Class 1 and 2 sections                                                                                                                         |                                                 |                  |
| $\overline{\lambda}_{LT} = \frac{1}{\sqrt{C_1}} 0.9 \overline{\lambda}_z \sqrt{\beta_w} = 0.69 \times 0.9 \times 0.65 \times \sqrt{1} = 0.40$                             | P362 5.6                                        | .2.1(5)          |
| From the UK National Annex $\overline{\lambda}_{LT,0} = 0.4$                                                                                                              | NA.2.17                                         |                  |
| As $\overline{\lambda}_{LT} = \overline{\lambda}_{LT,0}$ the resistance to lateral-torsional buckling does not need to be verified.                                       | 6.3.2.2(4                                       | )                |
| <b>7.9 Blue Book Approach</b><br>The design resistances may be obtained from SCI publication P363.                                                                        | Page refe<br>Section 7<br>P363 unl<br>otherwise | .9 are to<br>ess |
| Consider the $686 \times 254 \times 125$ UKB in S275                                                                                                                      | Omer wise                                       | siaiea.          |
| 7.9.1 Design bending moments and shear forces                                                                                                                             |                                                 |                  |
| The four possible load cases are shown in Figure 7.3, with the design bending moment and shear force diagrams shown in Figure 7.4.                                        |                                                 |                  |
| Maximum design bending moment occurs at point 3 for load case 4<br>$M_{\rm Ed} = 952 \text{ kNm}$                                                                         |                                                 |                  |
| Maximum design shear occurs at point 3 for load case 4<br>$V_{\rm Ed} = 546$ kN                                                                                           |                                                 |                  |
| 7.9.2 Cross section classification                                                                                                                                        |                                                 |                  |
| Under bending the $686 \times 254 \times 125$ UKB in S275 is Class 1.                                                                                                     | Page C-6                                        | 3                |
| 7.9.3 Cross-sectional resistance                                                                                                                                          |                                                 |                  |
| Shear resistance                                                                                                                                                          |                                                 |                  |
| $V_{c,Rd} = 1280 \text{ kN}$                                                                                                                                              | Page C-1                                        | 02               |
| $\frac{V_{\rm Ed}}{V_{\rm c,Rd}} = \frac{546}{1280} = 0.43 < 1.0$                                                                                                         |                                                 |                  |
| Therefore the shear resistance is adequate                                                                                                                                |                                                 |                  |
|                                                                                                                                                                           |                                                 |                  |

| Example 7 - Continuous beam designed elastically Sheet 13                                                                                                                                                                                       | of 14     | Rev |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|
| Bending moment resistance                                                                                                                                                                                                                       |           |     |
| $\frac{V_{\rm c,Rd}}{2} = \frac{1280}{2} = 640 \text{ kN}$                                                                                                                                                                                      |           |     |
| $V_{3,\rm Ed}$ = 546 kN < 640 kN                                                                                                                                                                                                                |           |     |
| Therefore there is <b>no reduction</b> in the bending resistance.                                                                                                                                                                               |           |     |
| $M_{c,y,Rd} = 1060 \text{ kNm}$                                                                                                                                                                                                                 | Page C-63 | 3   |
| $\frac{M_{\rm Ed}}{M_{\rm c,y,Rd}} = \frac{952}{1060} = 0.90 < 1.0$                                                                                                                                                                             |           |     |
| Therefore the bending moment resistance is adequate                                                                                                                                                                                             |           |     |
| 7.9.4 Member buckling resistance                                                                                                                                                                                                                |           |     |
| Consider length 6-7                                                                                                                                                                                                                             |           |     |
|                                                                                                                                                                                                                                                 |           |     |
| x<br>x<br>3000<br>x                                                                                                                                                                                                                             |           |     |
| -820                                                                                                                                                                                                                                            |           |     |
| Bending moment kNm                                                                                                                                                                                                                              |           |     |
| -133                                                                                                                                                                                                                                            |           |     |
|                                                                                                                                                                                                                                                 |           |     |
| $M_{6,\text{Ed}} = -820 \text{ kNm}$ $M_{7,\text{Ed}} = -133 \text{ kNm}$                                                                                                                                                                       |           |     |
| Take the buckling length $(L_{cr})$ to be the span length between adjacent lateral restraints, therefore:                                                                                                                                       |           |     |
| $L_{\rm cr} = 3.0 \ {\rm m}$                                                                                                                                                                                                                    |           |     |
| From Sheet 9 $\frac{1}{\sqrt{C_1}} = 0.79$                                                                                                                                                                                                      | Sheet 9   |     |
| Thus,                                                                                                                                                                                                                                           |           |     |
| $C_1 = \left(\frac{1}{0.79}\right)^2 = 1.60$                                                                                                                                                                                                    |           |     |
| From interpolation for $C_1 = 1.60$ and $L = 3$ m                                                                                                                                                                                               |           |     |
| $M_{\rm b,Rd} = 1060 \text{ kNm}$                                                                                                                                                                                                               | Page C-6  | 3   |
| Therefore,                                                                                                                                                                                                                                      |           |     |
| $M_{6-7,b,Rd} = 1060 \text{ kNm}$                                                                                                                                                                                                               |           |     |
| Note: The value determined from the Blue Book for $M_{6-7,b,Rd}$ is greater than that determined in Section 7.8 of this example because the simplified conservative method given in P362 has been used to determine $\overline{\lambda}_{LT}$ . |           |     |
| $\frac{M_{6,\rm Ed}}{M_{6-7,\rm b,Rd}} = \frac{820}{1060} = 0.77 < 1.0$                                                                                                                                                                         |           |     |
| The buckling resistance is adequate.                                                                                                                                                                                                            |           |     |

| Example 7 - Continuous beam designed elastically                                                     | Sheet | 14 | of 14     | Rev |
|------------------------------------------------------------------------------------------------------|-------|----|-----------|-----|
| Consider length 2-3                                                                                  |       |    |           |     |
|                                                                                                      |       |    |           |     |
| 3000                                                                                                 |       |    |           |     |
| -952                                                                                                 |       |    |           |     |
| 312 Bending moment kNm                                                                               |       |    |           |     |
| $M_{2,\rm Ed} = 312 \rm kNm$ $M_{3,\rm Ed} = -952 \rm kNm$                                           |       |    |           |     |
| Take the buckling length $(L_{cr})$ to be the span length between adjacent la restraints, therefore: | teral |    |           |     |
| $L_{\rm cr} = 3.0 {\rm m}$                                                                           |       |    |           |     |
| From sheet 12 $\frac{1}{\sqrt{C_1}} = 0.69$                                                          |       |    | Sheet 12  |     |
| Thus,                                                                                                |       |    |           |     |
| $C_1 = \left(\frac{1}{0.69}\right)^2 = 2.10$                                                         |       |    |           |     |
| From interpolation for $C_1 = 2.10$ and $L = 3$ m                                                    |       |    |           |     |
| $M_{\rm b,Rd}$ = 1060 kNm                                                                            |       |    | Page C-63 | 3   |
| Therefore,                                                                                           |       |    |           |     |
| $M_{2-3,b,Rd} = 1060 \text{ kNm}$                                                                    |       |    |           |     |
| $\frac{M_{3,\text{Ed}}}{M_{2-3,\text{b,Rd}}} = \frac{952}{1060} = 0.90 < 1.0$                        |       |    |           |     |
| The buckling resistance is adequate.                                                                 |       |    |           |     |
|                                                                                                      |       |    |           |     |
|                                                                                                      |       |    |           |     |
|                                                                                                      |       |    |           |     |
|                                                                                                      |       |    |           |     |
|                                                                                                      |       |    |           |     |
|                                                                                                      |       |    |           |     |
|                                                                                                      |       |    |           |     |
|                                                                                                      |       |    |           |     |
|                                                                                                      |       |    |           |     |
|                                                                                                      |       |    |           |     |
|                                                                                                      |       |    |           |     |
|                                                                                                      |       |    |           |     |

|                                                                 | Job No.   | CDS164                                      |                                             | Sheet 1 | of 20   | Rev        |  |  |
|-----------------------------------------------------------------|-----------|---------------------------------------------|---------------------------------------------|---------|---------|------------|--|--|
|                                                                 | Job Title | Worked examined                             | Worked examples to the Eurocodes with UK NA |         |         |            |  |  |
| Silwood Park, Ascot, Berks SL5 7QN<br>Telephone: (01344) 636525 | Subject   | Example 8 - Simply supported composite beam |                                             |         |         |            |  |  |
| Fax: (01344) 636570                                             | Client    | SCI                                         | Made by                                     | ALS     | Date Fe | b 2009     |  |  |
| CALCULATION SHEET                                               |           |                                             | Checked by                                  | SJH     | Date Ju | 1 2009     |  |  |
| 8 Simply supported composite beam                               |           |                                             |                                             |         | Referen | ces are to |  |  |

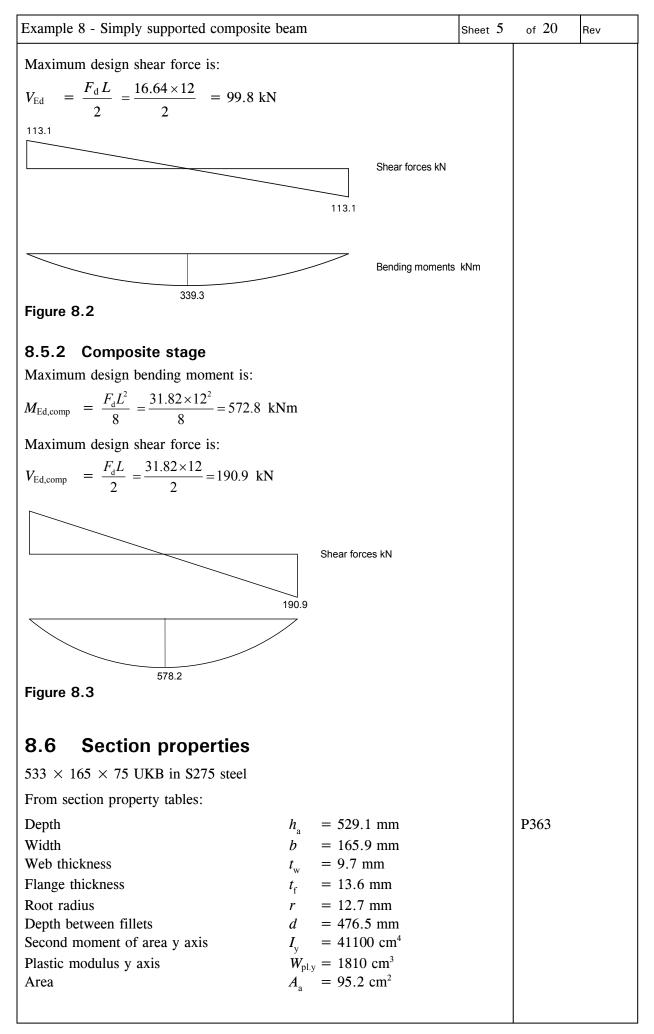
BS EN 1994-1-1: 2005, including its


National Annex, unless otherwise

stated.

## Simply supported composite beam 8

## 8.1 Scope


Design the composite beam shown in Figure 8.1 in S275 steel. The beam is subject to a uniform load and is not propped during construction. The beamto-column connections are such that the beams may be considered as simply supported.



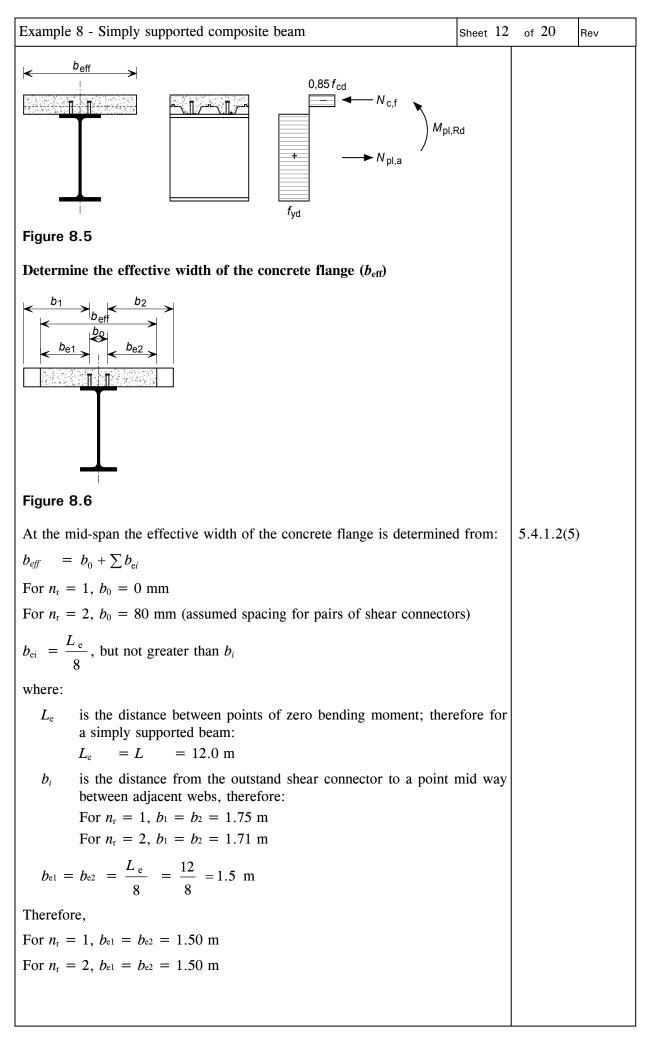
| Example 8 - Simply supported composite                   | beam                                                | Sheet 2 | of 20     | Rev    |
|----------------------------------------------------------|-----------------------------------------------------|---------|-----------|--------|
| The design aspects covered in this example               | le are:                                             |         |           | 1      |
| • Calculation of design values actions for               |                                                     |         |           |        |
| Cross section classification                             |                                                     |         |           |        |
| Cross-sectional resistance of the steel                  | heam                                                |         |           |        |
| <ul> <li>Shear buckling</li> </ul>                       |                                                     |         |           |        |
| – Vertical shear                                         |                                                     |         |           |        |
| <ul> <li>Bending moment</li> </ul>                       |                                                     |         |           |        |
| • Shear connection                                       |                                                     |         |           |        |
| • Cross-sectional resistance of the comp                 | osite beam                                          |         |           |        |
| – Vertical shear                                         |                                                     |         |           |        |
| <ul> <li>Bending moment</li> </ul>                       |                                                     |         |           |        |
| - Longitudinal shear resistance of th                    | e slab                                              |         |           |        |
| • Serviceability considerations                          |                                                     |         |           |        |
| <ul> <li>Modular ratio</li> </ul>                        |                                                     |         |           |        |
| – Deflections                                            |                                                     |         |           |        |
| <ul> <li>Serviceability stress verification</li> </ul>   |                                                     |         |           |        |
| – Natural frequency.                                     |                                                     |         |           |        |
| 8.2 Floor details                                        |                                                     |         |           |        |
| Span                                                     | L = 12.0  m                                         |         |           |        |
| Beam spacing                                             | b = 3.5  m                                          |         |           |        |
| Slab depth<br>Profiled metal decking                     | $h_{\rm s} = 130.0 \text{ mm}$<br>0.9 mm Corus CF60 |         |           |        |
| Depth of concrete above profile                          | $h_{\rm c}$ = 70.0 mm                               |         |           |        |
| Decking profile height                                   | $h_{\rm p}$ = 60.0 mm                               |         |           |        |
| 8.2.1 Shear connectors                                   |                                                     |         |           |        |
| Connector diameter                                       | d = 19  mm                                          |         |           |        |
| Overall height<br>As-welded height                       | $h_{\rm sc} = 100 \text{ mm}$<br>= 95 mm            |         |           |        |
| Ultimate tensile strength                                | $f_{\rm u} = 450 \text{ N/mm}^2$                    |         |           |        |
| 8.2.2 Concrete                                           |                                                     |         |           |        |
| Normal weight concrete grade C25/30                      |                                                     |         |           |        |
| Characteristic cylinder strength                         | $f_{\rm ck}$ = 25 N/mm <sup>2</sup>                 |         | BS EN 19  | 92-1-1 |
| Characteristic cube strength                             | $f_{\rm ck.cube} = 30 \text{ N/mm}^2$               |         | Table 3.1 |        |
| Secant modulus of elasticity of concrete                 | $E_{\rm cm} = 31 \ \rm kN/mm^2$                     |         |           |        |
| Concrete volume (from Corus datasheet)                   | $= 0.097 \text{ m}^3/\text{m}^2$                    |         |           |        |
| 8.2.3 Reinforcement                                      |                                                     |         |           |        |
| Reinforcing bar diameter                                 | 8 mm (A252 mesh)                                    |         |           |        |
| Spacing of bars<br>Area per unit width (both directions) | 200 mm<br>252 mm <sup>2</sup> /m                    |         |           |        |
| Yield strength                                           | $f_{\rm sk} = 500 \text{ N/mm}^2$                   |         |           |        |
| -                                                        |                                                     |         |           |        |

| Example 8 - Simply supported composite beam Shee                                                                                                                                                                                                                                          | et 3 | of 20                           | Rev     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------|---------|
| 8.3 Actions                                                                                                                                                                                                                                                                               |      |                                 |         |
|                                                                                                                                                                                                                                                                                           |      |                                 |         |
| 8.3.1 Construction stage<br>Permanent actions                                                                                                                                                                                                                                             |      |                                 |         |
| Slab (0.097 m <sup>3</sup> /m <sup>2</sup> @ 26 kN/m <sup>3</sup> )       = 2.52 kN/m <sup>2</sup> Decking       = 0.10 kN/m <sup>2</sup> Total $g_{k,1}$ = 2.62 kN/m <sup>2</sup> Allowance for beam self-weight $g_{k,2}$ = 1.0 kN/m                                                    |      | BS EN 1<br>Table A.             |         |
| Variable actions                                                                                                                                                                                                                                                                          |      |                                 |         |
| BS EN 1991-1-6 NA.2.13 provides recommended values for $q_{cc}$ and $q_{ca}$ but allows alternative values to be determined.                                                                                                                                                              | t    | BS EN 1<br>NA.2.13              | 991-1-6 |
| $q_{cc}$ is the construction load due to non-permanent equipment in positive for use during execution.                                                                                                                                                                                    | on   |                                 |         |
| $q_{ca}$ is the construction load due to working personnel, staff and visitor possibly with hand tools or other small site equipment.                                                                                                                                                     | rs,  |                                 |         |
| For composite beam design, the SCI recommends the use of $q_{cc} = 0$ and $q_{ca} = 0.75 \text{ kN/m}^2$                                                                                                                                                                                  |      |                                 |         |
| Construction loads $q_{k,1} = q_{ca,k} = 0.75 \text{ kN/m}^2$                                                                                                                                                                                                                             |      |                                 |         |
| 8.3.2 Composite stage                                                                                                                                                                                                                                                                     |      |                                 |         |
| Permanent actions                                                                                                                                                                                                                                                                         |      |                                 |         |
| Slab (0.097 $m^3/m^2$ @ 25 kN/m³)= 2.43 kN/m²Decking= 0.10 kN/m²Total $g_{k,1}$ = 2.53 kN/m²Allowance for beam self-weight $g_{k,2}$ = 1.0 kN/mCeiling and services $g_{k,3}$ = 0.50 kN/m²                                                                                                |      | BS EN 1<br>Table A.             |         |
| Variable actions                                                                                                                                                                                                                                                                          |      |                                 |         |
| The beam considered here will support a "general use" office floor area (category B1).                                                                                                                                                                                                    |      | BS EN 1<br>Table NA<br>Table NA | A.2 &   |
| Imposed floor load (B1) $q_{k,1} = 2.5 \text{ kN/m}^2$                                                                                                                                                                                                                                    |      |                                 |         |
| As the composite floor allows a lateral distribution of loads, a uniformly distributed load can be added to the imposed variable floor load to allow for movable partitions. Three values for the imposed load due to moveable partitions are given, here, $q_{k,2} = 0.8 \text{ kN/m}^2$ | or   | BS EN 1<br>6.3.1.2(8            |         |
| Therefore, the total variable action is $q_k = 3.3 \text{ kN/m}^2$                                                                                                                                                                                                                        |      |                                 |         |
| 8.3.3 Partial factors for actions                                                                                                                                                                                                                                                         |      |                                 |         |
| Partial factor for permanent actions $\gamma_G$ = 1.35Partial factor for variable actions $\gamma_Q$ = 1.50Reduction factor $\xi$ = 0.925                                                                                                                                                 |      | BS EN 1<br>Table<br>NA.A1.2     |         |
| Note for this example, the combination coefficient ( $\psi_0$ ) is not required as the variable actions are not independent of each other (see Section 2.2.4 of Example 2 for discussion).                                                                                                | ne   |                                 |         |

| Example              | e 8 - Simply supported composite beam                                                                                                                  | Sheet 4 | of 20               | Rev  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|------|
| 8.4                  | Design values of combined actions                                                                                                                      |         |                     |      |
| 8.4.1                | Construction stage, at ULS                                                                                                                             |         |                     |      |
|                      | discussion given in Example 2 for details of the options available<br>bination of actions for structural resistance. Here Expression 6.                |         |                     |      |
| ξ γ Gj ,sup          | $g_{j, \sup} + \gamma_{Gj, \inf} g_{j, \inf} + \gamma_{Q, 1} q_1 + \gamma_{Q, i} \psi_{0, i} q_i$                                                      |         | BS EN 1<br>Eq (6.10 |      |
| As there<br>this exa | e is only a single variable action, $\gamma_{\rm Q,i}$ , $\psi_{0,i}$ and $q_i$ are not required.                                                      | ired in |                     |      |
|                      | re, the design UDL on the beam at the construction stage is:                                                                                           |         |                     |      |
| $F_{\rm d}$ =        | $= \xi \gamma_{\mathrm{G}} g_{\mathrm{k},2} + \left[ \xi \gamma_{\mathrm{G}} g_{\mathrm{k},1} + \gamma_{\mathrm{Q}} q_{\mathrm{k},1} \right] \times b$ |         | BS EN 1             | 990  |
|                      | $= 0.925 \times 1.35 \times 1.0 + [(0.925 \times 1.35 \times 2.62) + (1.5 \times 0.75)] \times 3.5$<br>= 16.64 kN/m                                    |         | Table<br>NA.A1.2    | (B)  |
|                      | <b>Composite stage, at ULS</b><br>ign UDL at the composite stage is:                                                                                   |         |                     |      |
| $F_{\rm d}$ =        | $= \xi \gamma_{\rm G} g_{\rm k,2} + \left[ \xi \gamma_{\rm G} (g_{\rm k,1} + g_{\rm k,3}) + \gamma_{\rm Q} q_{\rm k} \right] \times b$                 |         | BS EN 1             | 990  |
| $F_{\rm d}$ =        | $= 0.925 \times 1.35 \times 1.0 + [0.925 \times 1.35 \times (2.53 + 0.5) + (1.5 \times 3.3)] \times 3.5 = 31.82$                                       | kN/m    | Table<br>NA.A1.2    | 2(B) |
| 8.4.3                | SLS Loading                                                                                                                                            |         |                     |      |
| As britt             | le finishes may be attached to the beam, the characteristic combines is considered. Therefore the applied loading for calculation of                   |         |                     |      |
| Perman               | ent actions applied to steel beam: slab loading + beam                                                                                                 | weight  |                     |      |
| $g_1 = 2$            | $.53 \times 3.5 + 1.0 = 9.86 \text{ kN/m}$                                                                                                             |         |                     |      |
|                      | ent actions applied to composite beam: ceiling and services                                                                                            |         |                     |      |
| $g_2 = 0$            | $.5 \times 3.5 = 1.75 \text{ kN/m}$                                                                                                                    |         |                     |      |
|                      | e actions applied to composite beam: imposed floor load                                                                                                |         |                     |      |
| $q_1 = 3$            | $.3 \times 3.5 = 11.6 \text{ kN/m}$                                                                                                                    |         |                     |      |
|                      | e actions for natural frequency calculations. From guidance give 0% of the imposed load should be considered therefore:                                | en in   | P354                |      |
| $q_2 = 3$            | $.3 \times 3.5 \times 0.1 = 1.16 \text{ kN/m}$                                                                                                         |         |                     |      |
| 8.5                  | Design bending moments and shear force                                                                                                                 | es      |                     |      |
| 8.5.1                | Construction stage                                                                                                                                     |         |                     |      |
| Maximu               | im design bending moment is:                                                                                                                           |         |                     |      |
| $M_{\rm Ed}$ =       | $=\frac{F_{\rm d}L^2}{8}=\frac{16.64\times12^2}{8}=299.5$ kNm                                                                                          |         |                     |      |
|                      |                                                                                                                                                        |         |                     |      |
|                      |                                                                                                                                                        |         |                     |      |



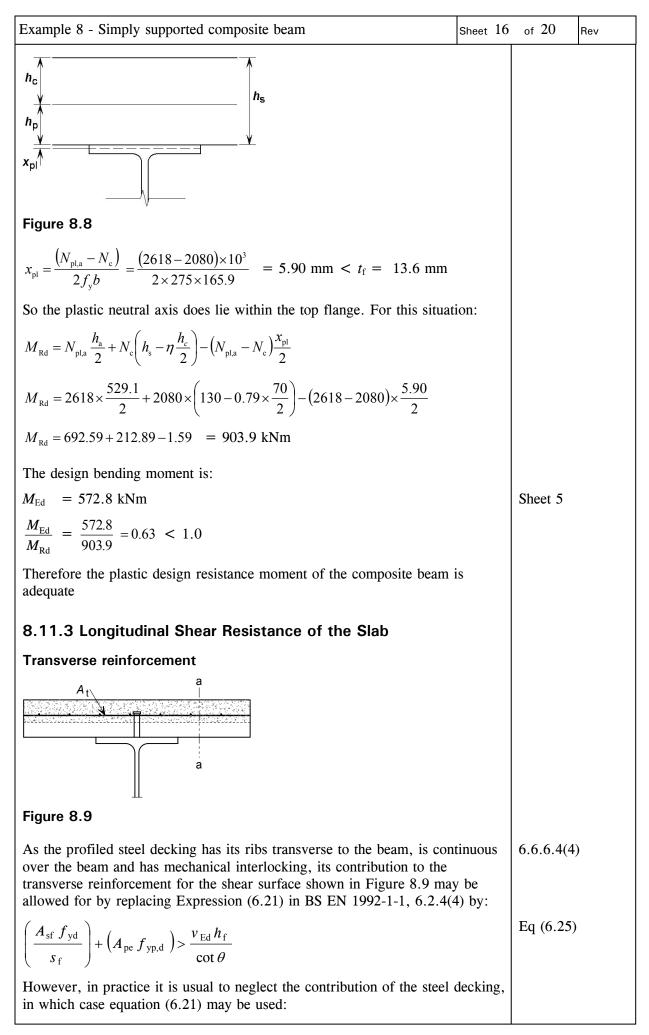
| Example 8 - Simply supported composite beam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sheet 6        | of 20                    | Rev     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|---------|
| Modulus of elasticity $E = 210 \text{ kN/m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m <sup>2</sup> | BS EN 19<br>3.2.6(1)     | 93-1-1  |
| For buildings that will be built in the UK, the nominal values strength $(f_y)$ and the ultimate strength $(f_u)$ for structural steel s obtained from the product standard. Where a range is given, nominal value should be used.                                                                                                                                                                                                                                                                                                                                                      | hould be those | BS EN 1993-1-1<br>NA.2.4 |         |
| For S275 steel and t $\leq$ 16 mm<br>Therefore, $f_y = R_{eH} = 275 \text{ N/mm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | BS EN 10<br>Table 7      | 0025-2  |
| 8.7 Cross section classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                          |         |
| $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | BS EN 19<br>Table 5.2    | 93-1-1  |
| Outstand of compression flange<br>h = t = 2r 165 9 = 9.7 = (2 × 12.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | BS EN 19<br>Table 5.2    | 93-1-1  |
| $c = \frac{b - t_w - 2r}{2} = \frac{165.9 - 9.7 - (2 \times 12.7)}{2} = 65.4 \text{ m}$ $\frac{c}{t_f} = \frac{65.4}{13.6} = 4.81$ The limiting value for Class 1 is $\frac{c}{t_f} \le 9\varepsilon = 9 \times 0.92 = 8.28$ $4.81 < 8.28$ Therefore the flange in compression is Class 1 Web subject to bending $c = d = 476.5 \text{ mm}$ $\frac{c}{t_w} = \frac{476.5}{9.7} = 49.12$ The limiting value for Class 1 is $\frac{c}{t_w} \le 72\varepsilon = 72 \times 0.92 = 66.$ $49.12 < 66.24$ Therefore the web in bending is Class 1. Therefore the section in bending is Class 1 |                | BS EN 19<br>Table 5.2    | 993-1-1 |
| Steel section<br>$\gamma_{M0} = 1.0$<br>$\gamma_{M1} = 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | BS EN 19<br>NA.2.15      | 93-1-1  |
| <b>Shear connector</b><br>For the shear resistance of a shear connector $\gamma_v = 1.25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | NA.2.3                   |         |


| Example 8 - Simply supported composite beam                                                                                                   | Sheet 7             | of 20                             | Rev     |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------|---------|
| <b>Concrete</b><br>For persistent and transient design situations<br>$\gamma_c = 1.5$                                                         |                     | BS EN 19<br>Table NA              |         |
| <b>Reinforcement</b><br>For persistent and transient design situations<br>$\gamma_s = 1.15$                                                   |                     | BS EN 19<br>Table NA              |         |
| 8.9 Design resistance for the construction st                                                                                                 | age                 |                                   |         |
| 8.9.1 Cross-sectional resistance of the steel beam                                                                                            |                     |                                   |         |
| Shear buckling<br>The shear buckling resistance for webs should be verified if:<br>$\frac{h_{\rm w}}{t_{\rm w}} > \frac{72\varepsilon}{\eta}$ |                     | BS EN 19<br>5.1(2)                | 993-1-5 |
| $\eta = 1.0$                                                                                                                                  |                     | BS EN 19<br>NA.2.4                | 93-1-5  |
| $h_{\rm w} = h_{\rm a} - 2t_{\rm f} = 529.1 - (2 \times 13.6) = 501.9 \text{ mm}$                                                             |                     |                                   |         |
| $\frac{h_{\rm w}}{t_{\rm w}} = \frac{501.9}{9.7} = 51.74$                                                                                     |                     |                                   |         |
| $72\frac{\varepsilon}{\eta} = 72 \times \frac{0.92}{1.0} = 66.24$                                                                             |                     |                                   |         |
| 51.74 < 66.24<br>Therefore the shear buckling resistance of the web does not need to be verified.                                             |                     |                                   |         |
| Vertical shear resistance                                                                                                                     |                     |                                   |         |
| Verify that:<br>$\frac{V_{\rm Ed}}{V_{\rm c,Rd}} \le 1.0$                                                                                     |                     | BS EN 19<br>6.2.6(1)<br>Eq (6.17) | 93-1-1  |
| $V_{c,Rd}$ is the design plastic shear resistance ( $V_{pl,Rd}$ ).                                                                            |                     |                                   |         |
| $V_{\rm c,Rd} = V_{\rm pl,a,Rd} = \frac{A_{\rm v} \left(f_{\rm y} / \sqrt{3}\right)}{\gamma_{\rm M0}}$                                        |                     | BS EN 19<br>6.2.6(2)<br>Eq (6.18) | 93-1-1  |
| $A_v$ is the shear area and is determined as follows for rolled I and H sec with the load applied parallel to the web.                        | tions               |                                   |         |
| $A_{\rm v} = A - 2 b t_{\rm f} + t_{\rm f} \left( t_{\rm w} + 2 r \right) \geq \eta h_{\rm w} t_{\rm w}$                                      |                     | BS EN 19<br>6.2.6(3)              | 93-1-1  |
| $= 95.2 \times 10^{2} - (2 \times 165.9 \times 13.6) + 13.6 \times (9.7 + (2 \times 12.7)) = 54$                                              | 485 mm <sup>2</sup> | 0.2.0(3)                          |         |
| $\eta h_{\rm w} t_{\rm w} = 1.0 \times (529.1 - 2 \times 13.6) \times 9.7 = 4868 \text{ mm}^2 < 5485 \text{ mm}^2$                            |                     |                                   |         |
| Therefore, $A_v = 5485 \text{ mm}^2$                                                                                                          |                     |                                   |         |

| Example 8 - Simply supported composite beam Sheet 8                                                                                                                                                                               | 3 of 20 Rev                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Design plastic shear resistance                                                                                                                                                                                                   | BS EN 1993-1-1<br>6.2.6 (2) |
| $V_{\rm pl,a,Rd} = \frac{A_{\rm v,z} (f_{\rm y} / \sqrt{3})}{\gamma_{\rm M0}} = \frac{5485 \times (275 / \sqrt{3}) \times 10^{-3}}{1.0} = 870.9 \text{ kN}$                                                                       | 0.2.0 (2)                   |
| Maximum design shear for the construction stage is $V_{\rm Ed} = 99.8$ kN                                                                                                                                                         |                             |
| $\frac{V_{\rm Ed}}{V_{\rm pl,a,Rd}} = \frac{99.8}{870.9} = 0.115 < 1.0$                                                                                                                                                           |                             |
| Therefore the shear resistance of the section is adequate.                                                                                                                                                                        |                             |
| Bending moment resistance                                                                                                                                                                                                         |                             |
| Verify that:                                                                                                                                                                                                                      | BS EN 1993-1-1              |
| $\frac{M_{\rm Ed}}{1.0} \leq 1.0$                                                                                                                                                                                                 | 6.2.5(1)<br>Eq (6.12)       |
| $M_{\rm c,Rd}$                                                                                                                                                                                                                    |                             |
| As $\frac{V_{\text{pl,a,Rd}}}{2} = \frac{870.9}{2} = 435.5 \text{ kN} > V_{\text{Ed}} (99.8 \text{ kN})$                                                                                                                          | 6.2.2.4(1)                  |
| No reduction in the bending moment resistance of the steel section for coexistent shear need be made at any point along the beam.                                                                                                 |                             |
| The design resistance for bending for Class 1 and 2 cross-sections is:                                                                                                                                                            | BS EN 1993-1-1<br>6.2.5(2)  |
| $M_{\rm c,Rd} = M_{\rm pl,a,Rd} = \frac{W_{\rm pl,y} f_y}{\gamma_{\rm M0}} = \frac{1810 \times 10^3 \times 275}{1.0} \times 10^{-6} = 497.2 \text{ kNm}$                                                                          | Eq (6.13)                   |
| $\frac{M_{\rm y,Ed}}{M_{\rm c,Rd}} = \frac{299.5}{497.2} = 0.602 < 1.0$                                                                                                                                                           | BS EN 1993-1-1<br>6.2.5(1)  |
| Therefore the bending resistance is adequate.                                                                                                                                                                                     | Eq (6.12                    |
| 8.9.2 Buckling resistance                                                                                                                                                                                                         |                             |
| The steel decking is connected to the steel beam by thru-deck welding of the stud connectors and provides continuous restraint to the top flange of the steel beam, so the beam is not susceptible to lateral torsional buckling. |                             |
| 8.10 Shear connection                                                                                                                                                                                                             |                             |
| 8.10.1 Design resistance of shear connectors                                                                                                                                                                                      |                             |
| Shear connector in a solid slab                                                                                                                                                                                                   |                             |
| The design resistance of a single headed shear connector in a solid concrete slab $(P_{\rm Rd})$ , which is automatically welded in accordance with BS EN 14555 is given by the smaller of:                                       |                             |
| $P_{\rm Rd} = \frac{0.8 \times f_{\rm u} \times \pi \times d^2 / 4}{\gamma_{\rm v}}$                                                                                                                                              | 6.6.3.1(1)<br>Eq (6.18)     |
|                                                                                                                                                                                                                                   |                             |
|                                                                                                                                                                                                                                   |                             |

| Example 8 - Simply supported composite beam                                                                                                                                                    | Sheet 9  | of 20                   | Rev |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------|-----|
| and<br>$P_{\rm Rd} = \frac{0.29 \times \alpha \times d^2 \sqrt{f_{\rm ck} \times E_{\rm cm}}}{\gamma_{\rm V}}$                                                                                 |          | Eq (6.19)               |     |
| where:                                                                                                                                                                                         |          |                         |     |
| $\alpha = 1.0 \text{ as } \frac{h_{\rm sc}}{d} = \frac{100}{19} > 4$                                                                                                                           |          | Eq (6.21)               |     |
| $P_{\rm Rd} = \frac{0.8 \times 450 \times \pi \times (19^2 / 4)}{1.25} \times 10^{-3} = 81.7 \text{ kN}$                                                                                       |          | Eq (6.18)               |     |
| $P_{\rm Rd} = \frac{0.29 \times 1.0 \times 19^2 \times \sqrt{25 \times 31 \times 10^3}}{1.25} \times 10^{-3} = 73.7 \text{ kN}$                                                                |          | Eq (6.19)               |     |
| Therefore the design resistance of a single headed shear connector ember<br>a solid concrete slab is                                                                                           | edded in |                         |     |
| $P_{\rm Rd,solid} = 73.7 \ \rm kN$                                                                                                                                                             |          |                         |     |
| Shear connectors in profiled decking<br>For profiled decking with ribs running transverse to the supporting bear $P_{\text{Rd,solid}}$ should be multiplied by the following reduction factor. | ns       |                         |     |
| $k_{\rm t} = \frac{0.7}{\sqrt{n_{\rm r}}} \frac{b_0}{h_{\rm p}} \left( \frac{h_{\rm sc}}{h_{\rm p}} - 1 \right)$                                                                               |          | 6.6.4.2(1)<br>Eq (6.23) |     |
| Where $h_{\rm p}$ , $h_{\rm sc}$ and $b_0$ are as shown in Figure 8.4 and $n_{\rm r}$ is the number of in each rib.                                                                            | fstuds   |                         |     |
| But $k_t \le k_{t,max}$ (taken from Table 6.2)                                                                                                                                                 |          | 6.6.4.2(2)              | )   |
| $ \begin{array}{     } \hline & & & & & & & & & \\ \hline & & & & & & & &$                                                                                                                     |          |                         |     |
| Figure 8.4                                                                                                                                                                                     |          |                         |     |
| $b_0 = 139 \text{ mm}$<br>$h_{sc} = 100 \text{ mm}$<br>$h_p = 60 \text{ mm}$                                                                                                                   |          |                         |     |
| For one shear connector per rib ( $n_r = 1$ )                                                                                                                                                  |          |                         |     |
| $k_{\rm t} = \frac{0.7}{\sqrt{1.0}} \times \frac{139}{60} \times \left(\frac{100}{60} - 1\right) = 1.08$                                                                                       |          | Eq (6.23)               |     |
|                                                                                                                                                                                                |          |                         |     |
|                                                                                                                                                                                                |          |                         |     |
|                                                                                                                                                                                                |          |                         |     |

| Example 8 - Simply supported composite beam Sheet 1                                                                                                                                                  | 0   | of 20      | Rev |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|-----|
| For shear connectors welded through the profiled decking with $t \le 1.0$ mm and $n_r = 1$ :                                                                                                         | 1   |            |     |
| $k_{\rm t,max} = 0.85$                                                                                                                                                                               |     | Table 6.2  |     |
| Therefore,                                                                                                                                                                                           |     |            |     |
| $k_{\rm t} = 0.85$                                                                                                                                                                                   |     |            |     |
| Hence, the design resistance per shear connector is:                                                                                                                                                 |     |            |     |
| $P_{\rm Rd} = k_{\rm t} P_{\rm Rd, solid} = 73.7 \times 0.85 = 62.6 \text{ kN}$                                                                                                                      |     |            |     |
| And the design resistance per rib is:                                                                                                                                                                |     |            |     |
| $n_{\rm r}P_{\rm Rd} = 1 \times 62.6 = 62.6  \rm kN$                                                                                                                                                 |     |            |     |
| For two shear connectors per rib ( $n_r = 2$ )                                                                                                                                                       |     |            |     |
| $k_{\rm t} = \frac{0.7}{\sqrt{2.0}} \times \frac{139}{60} \times \left(\frac{100}{60} - 1\right) = 0.76$                                                                                             |     | Eq (6.23)  |     |
| For shear connectors welded through the profiled decking with $t \le 1.0$ mm and $n_r = 2$ :                                                                                                         | l t | Table ( )  |     |
| $k_{\rm t,max} = 0.7$                                                                                                                                                                                |     | Table 6.2  |     |
| Therefore,                                                                                                                                                                                           |     |            |     |
| $k_{\rm t} = 0.7$                                                                                                                                                                                    |     |            |     |
| Hence, the design resistance per shear connector is:                                                                                                                                                 |     |            |     |
| $P_{\rm Rd} = k_{\rm t} P_{\rm Rd, solid} = 73.7 \times 0.7 = 51.6 \text{ kN}$                                                                                                                       |     |            |     |
| And the design resistance per rib is:                                                                                                                                                                |     |            |     |
| $n_{\rm r}P_{\rm Rd} = 2 \times 51.6 = 103.2 \ \rm kN$                                                                                                                                               |     |            |     |
| 8.10.2 Degree of shear connection                                                                                                                                                                    |     |            |     |
| Minimum degree of shear connection                                                                                                                                                                   |     |            |     |
| For composite beams in buildings, the headed shear connectors may be considered as ductile when the minimum degree of shear connection given in $6.6.1.2$ is achieved.                               |     |            |     |
| For headed shear connectors with:                                                                                                                                                                    |     | 6.6.1.2(1) | )   |
| $h_{\rm sc} \ge 4d$ and 16 mm $\le d \le 25$ mm                                                                                                                                                      |     |            |     |
| The degree of shear connection may be determined from:                                                                                                                                               |     |            |     |
| $\eta = \frac{N_c}{N_{c,f}}$                                                                                                                                                                         |     |            |     |
| where:                                                                                                                                                                                               |     |            |     |
| $N_c$ is the reduced value of the compressive force in the concrete flange (i.e. the force transferred by the shear connectors)                                                                      |     |            |     |
| $N_{\rm c,f}$ is the compressive force in the concrete flange at full shear connection (i.e. the lesser of the compressive resistance of the concrete and the tensile resistance of the steel beam). |     |            |     |


| Example 8 - Simply supported composite beam                                                                                                                                                                                                                 | Sheet 11  | of 20                   | Rev |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------|-----|
| For steel sections with equal flanges and $L_{\rm e}$ < 25 m                                                                                                                                                                                                |           |                         |     |
| $\eta \ge 1 - \left(\frac{355}{f_y}\right) (0.75 - 0.03L_e), \ \eta \ge 0.4$                                                                                                                                                                                |           | 6.6.1.2(1)<br>Eq (6.12) |     |
| where:                                                                                                                                                                                                                                                      |           |                         |     |
| $L_{\rm e}$ is the distance between points of zero bending moment; there this simply supported beam:                                                                                                                                                        | efore for |                         |     |
| $L_{\rm e} = L = 12.0 {\rm m}$                                                                                                                                                                                                                              |           |                         |     |
| $\eta \ge 1 - \left(\frac{355}{275}\right) \left(0.75 - \left(0.03 \times 12\right)\right) = 0.50$                                                                                                                                                          |           |                         |     |
| As $0.50 > 0.4$ the required degree of shear connection is:                                                                                                                                                                                                 |           |                         |     |
| $\eta \geq 0.50$                                                                                                                                                                                                                                            |           |                         |     |
| However, for one shear connector per trough $(n_r = 1)$ , if the f conditions are satisfied, an alternative rule for the minimum degree connection may be used, as long as the simplified method is used to d the bending resistance of the composite beam: | of shear  |                         |     |
| • shear connectors of diameter 19 mm and height of not less than 76                                                                                                                                                                                         | mm        |                         |     |
| • rolled or welded I or H section with equal flanges                                                                                                                                                                                                        |           |                         |     |
| • composite slab using profiled steel sheeting that runs perpendicula beam and is continuous across it                                                                                                                                                      | ar to the |                         |     |
| • $b_0/h_p \ge 2$ and $h_p \le 60$ mm.                                                                                                                                                                                                                      |           |                         |     |
| As $b_0/h_p = 139/60 = 2.32$ and $h_p = 60$ mm, this method can be used case of one shear connector per trough. In this situation,                                                                                                                          | d for the |                         |     |
| $\eta \ge 1 - \left(\frac{355}{f_y}\right) (1.0 - 0.04L_e), \ \eta \ge 0.4$                                                                                                                                                                                 |           | 6.6.1.2(1<br>Eq (6.16)  | /   |
| $\eta \ge 1 - \left(\frac{355}{275}\right)(1.0 - 0.04 \times 12) = 0.33$                                                                                                                                                                                    |           |                         |     |
| As 0.33 < 0.4 the required degree of shear connection with $n_r = 1$ is:<br>$\eta \ge 0.4$                                                                                                                                                                  |           |                         |     |
| Degree of shear connection present                                                                                                                                                                                                                          |           |                         |     |
| To determine the degree of shear connection present in the beam, first forces in the steel and concrete are required ( $N_{pl,a}$ and $N_{c,f}$ respectively) shown in Figure 8.5.                                                                          |           |                         |     |
| For full shear connection (i.e. $\eta = 1.0$ ), the minimum of these axial for would need to be transferred via the shear connectors over half the spa degree of shear connection is the ratio of the force that can be transferred this force.             | n. The    |                         |     |
|                                                                                                                                                                                                                                                             |           |                         |     |
|                                                                                                                                                                                                                                                             |           |                         |     |
|                                                                                                                                                                                                                                                             |           |                         |     |
|                                                                                                                                                                                                                                                             |           | 1                       |     |



| Example 8 Simply supported composite beem                                                                                                                                                                       | Ch - · | 12 |       | 20     | Davi    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|-------|--------|---------|
| Example 8 - Simply supported composite beam                                                                                                                                                                     | Sheet  | 13 | ot 2  | .0     | Rev     |
| Hence at the mid-span the effective width of the concrete flange is:                                                                                                                                            |        |    |       |        |         |
| For $n_{\rm r} = 1$ , $b_{\rm eff} = b_0 + b_{\rm e1} + b_{\rm e2} = 0 + (2 \times 1.50) = 3.00 \text{ m}$                                                                                                      |        |    |       |        |         |
| For $n_{\rm r} = 2$ , $b_{\rm eff} = b_0 + b_{\rm e1} + b_{\rm e2} = 0.08 + (2 \times 1.50) = 3.08 {\rm m}$                                                                                                     |        |    |       |        |         |
| Compressive resistance of the concrete flange                                                                                                                                                                   |        |    |       |        |         |
| The design compressive strength of concrete is                                                                                                                                                                  |        |    |       |        | 994-1-1 |
| $f_{\rm cd} = \frac{f_{\rm ck}}{f_{\rm cd}}$                                                                                                                                                                    |        |    | 2.4.1 | 1.2(2) | )P      |
| γ <sub>c</sub>                                                                                                                                                                                                  |        |    |       |        |         |
| For persistent and transient design situations the design compressive str<br>the concrete is:                                                                                                                   | ength  | of |       |        |         |
| $f_{\rm cd} = \frac{25}{1.5} = 16.7 \text{ N/mm}^2$                                                                                                                                                             |        |    |       |        |         |
| Compressive resistance of the concrete flange is:                                                                                                                                                               |        |    |       |        |         |
| For $n_{\rm r} = 1$ ,                                                                                                                                                                                           |        |    |       |        |         |
| $N_{\rm c.Rd} = 0.85 f_{\rm cd} b_{\rm eff} h_{\rm c} = 0.85 \times 16.7 \times 3000 \times 70 \times 10^{-3} = 2981 \text{ kN}$                                                                                |        |    |       |        |         |
| For $n_{\rm r} = 2$ ,                                                                                                                                                                                           |        |    |       |        |         |
| $N_{\rm c.Rd} = 0.85 f_{\rm cd} b_{\rm eff} h_{\rm c} = 0.85 \times 16.7 \times 3080 \times 70 \times 10^{-3} = 3060 \text{ kN}$                                                                                |        |    |       |        |         |
| Tensile resistance of in the steel member                                                                                                                                                                       |        |    |       |        |         |
| $N_{\rm pl,a} = f_{\rm y}A_{\rm a} = 275 \times 95.2 \times 10^2 \times 10^{-3} = 2618 \text{ kN}$                                                                                                              |        |    |       |        |         |
| Compressive force in the concrete flange                                                                                                                                                                        |        |    |       |        |         |
| The compressive force in the concrete at full shear connection is the $N_{c,Rd}$ and $N_{pl,a}$ , and so $N_{c,f} = 2618$ kN                                                                                    | lesser | of |       |        |         |
| Resistance of the shear connectors                                                                                                                                                                              |        |    |       |        |         |
| n is the number of shear connectors present to the point of maximum b moment.                                                                                                                                   | ending | g  |       |        |         |
| In this example there are 20 ribs available for the positioning of shear connectors per half span (i.e. $12 / (2 \times 0.3)$ ).                                                                                |        |    |       |        |         |
| For $n_{\rm r} = 1, n = 20$                                                                                                                                                                                     |        |    |       |        |         |
| For $n_{\rm r} = 2, n = 40$                                                                                                                                                                                     |        |    |       |        |         |
| Where there is less than full shear connection, the reduced value of the compressive force in the concrete flange, $N_c$ , is given by the combined resistance of the shear connectors in each half-span. Thus, |        |    |       |        |         |
| For $n_{\rm r} = 1$ , $N_{\rm c} = n \times P_{\rm Rd} = 20 \times 62.6 = 1252$ kN                                                                                                                              |        |    |       |        |         |
| For $n_{\rm r} = 2$ , $N_{\rm c} = n \times P_{\rm Rd} = 40 \times 51.6 = 2064$ kN                                                                                                                              |        |    |       |        |         |
| Shear connection present                                                                                                                                                                                        |        |    |       |        |         |
| The degree of shear connection, $\eta$ , is the ratio of the reduced value of compressive force, $N_{\rm c}$ , to the concrete compressive force at full shear connection, $N_{\rm c,f}$ .                      | the    |    |       |        |         |
| For $n_{\rm r} = 1$ , $\eta = N_{\rm c} / N_{\rm c,f} = 1252 / 2618 = 0.48$                                                                                                                                     |        |    |       |        |         |
| For $n_{\rm r} = 2$ , $\eta = N_{\rm c} / N_{\rm c,f} = 2064 / 2618 = 0.79$                                                                                                                                     |        |    |       |        |         |

| Comparing the shear connection present to the minimum shear connection requirements established above $(\eta > 0.5, \text{ or } \eta > 0.4$ for one stud per trough using the simplified method, the shear connection exceeds the minimum requirement for $n_{\tau} = 2$ but only exceeds the requirement for $n_{\tau} = 2$ but only exceeds the requirement for $n_{\tau} = 2$ but only exceeds the requirement for $n_{\tau} = 2$ but only exceeds the requirement for $n_{\tau} = 2$ but only exceeds the requirement for $n_{\tau} = 2$ but only exceeds the requirement for $n_{\tau} = 2$ but only exceeds the requirement for $n_{\tau} = 2$ but only exceeds the requirement for $n_{\tau} = 2$ but only exceeds the requirement for $n_{\tau} = 2$ but only exceeds the requirement for $n_{\tau} = 2$ but only exceeds the requirement for $n_{\tau} = 2$ but only exceeds the requirement for $n_{\tau} = 1$ if the simplified method for calculating $M_{sal}$ is used.<br><b>8.11.1 Vertical shear resistance Shear buckling</b> As shown in Section 8.9.1, the shear buckling resistance does not need to be verified for the steel section. Plastic resistance to vertical shear The resistance to vertical shear ( $V_{pkall}$ ) should be taken as the resistance of the structural steel section ( $V_{ptall}$ ). $V_{plaskl} = 190.92 \text{ kN}$ Maximum design shear for the composite stage is $V_{tal} = 238.1 \text{ kN}$ Therefore the vertical shear resistance of the section is adequate. <b>8.11.2 Resistance to bending</b> As $\frac{V_{plaskl}}{2} = \frac{870.9}{2} = 435.5 \text{ kN} > V_{ka} (190.92 \text{ kN})$ No reduction in the bending resistance of the steel section need be made on account of the shear stress in the beam. <b>One shear connector</b> per trough $(n_{\tau} = 1)$ For one shear connector per trough $(n_{\tau} = 1)$ For one shear connector per trough $(n_{\tau} = 1)$ For one shear connector per trough $(n_{\tau} = 1)$ For one shear connector per trough $(n_{\tau} = 1)$ $M_{plask} = M_{plaskl} + (M_{plaskl} - M_{plaskl}) \frac{N_{x}}{N_{eff}}$ where: $\frac{N_{table}}{N_{table}} = \eta = 0.48$ $M_{plaskl}$ is design value of the plastic resistance moment of t | Example 8 - Simply supported composite beam                                                                                                                                                                                        | Sheet 14 | of 20      | Rev |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-----|
| the composite stageThe top flange is restrained laterally by the slab and therefore only cross-<br>sectional resistances need to be verified8.11.1 Vertical shear resistanceShear bucklingAs shown in Section 8.9.1, the shear buckling resistance does not need to be<br>verified for the steel section.Plastic resistance to vertical shearThe resistance to vertical shear ( $V_{pLRd}$ ) should be taken as the resistance of the<br>structural steel section ( $V_{pLRd}$ ). $V_{pLRdl} = 190.92 \text{ kN}$ Sheet 8Maximum design shear for the composite stage is $V_{id} = 238.1 \text{ kN}$ $V_{pLRdl} = \frac{190.92}{870.9} = 0.2 < 1.0$ Therefore the vertical shear resistance of the section is adequate.8.11.2 Resistance to bending<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | requirements established above ( $\eta > 0.5$ , or $\eta > 0.4$ for one stud per using the simplified method), the shear connection exceeds the minimu requirement for $n_r = 2$ but only exceeds the requirement for $n_r = 1$ if | trough m |            |     |
| sectional resistances need to be verified<br>8.11.1 Vertical shear resistance<br>Shear buckling<br>As shown in Section 8.9.1, the shear buckling resistance does not need to be<br>verified for the steel section.<br>Plastic resistance to vertical shear<br>The resistance to vertical shear ( $V_{pl,Rd}$ ) should be taken as the resistance of the<br>structural steel section ( $V_{pl,Rd}$ ).<br>$V_{pla,Rd} = 190.92 \text{ kN}$<br>Maximum design shear for the composite stage is $V_{rd} = 238.1 \text{ kN}$<br>$V_{rda,Rd} = \frac{190.92}{870.9} = 0.2 < 1.0$<br>Therefore the vertical shear resistance of the section is adequate.<br>8.11.2 Resistance to bending<br>As $\frac{V_{pla,Rd}}{2} = \frac{870.9}{2} = 435.5 \text{ kN} > V_{rd} (190.92 \text{ kN})$<br>No reduction in the bending resistance of the steel section need be made on<br>account of the shear stress in the beam.<br>One shear connector per trough ( $n_r = 1$ )<br>For one shear connector per trough, the shear connection provided can only<br>satisfy the lower of the minimum shear connection requirements; the simplified<br>method of calculating the design resistance to bending must therefore be used:<br>$M_{rd} = M_{pla,Rd} + (M_{pl,Rd} - M_{pla,Rd}) \frac{N_{e_c}}{N_{e_t}}$<br>where:<br>$\frac{N_{e_s}}{N_{e_s}} = \eta = 0.48$<br>$M_{pla,Rd}$ is design value of the plastic resistance moment of the structural<br>steel section (497.2 kNm)<br>$M_{pl,Rd}$ is design value of plastic resistance moment of the composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    | for      |            |     |
| Shear bucklingAs shown in Section 8.9.1, the shear buckling resistance does not need to be<br>verified for the steel section.Plastic resistance to vertical shear<br>tructural steel section $(V_{pl,R,d})$ should be taken as the resistance of the<br>structural steel section $(V_{pl,R,d})$ . $V_{pl,a,Rd} = 190.92 \text{ kN}$ Maximum design shear for the composite stage is $V_{\text{Ed}} = 238.1 \text{ kN}$ $V_{pl,a,Rd} = \frac{190.92}{870.9} = 0.2 < 1.0$ Therefore the vertical shear resistance of the section is adequate.8.11.2 Resistance to bendingAs $\frac{V_{pl,a,Rd}}{2} = \frac{870.9}{2} = 435.5 \text{ kN} > V_{\text{Ed}} (190.92 \text{ kN})$ No reduction in the bending resistance of the steel section need be made on<br>account of the shear stress in the beam.One shear connector per trough $(n_r = 1)$ For one shear connector per trough, the shear connection provided can only<br>satisfy the lower of the minimum shear connection requirements; the simplified<br>method of calculating the design resistance to bending must therefore be used: $M_{\text{Rd}} = M_{\text{pl},\text{a},\text{Rd}} + (M_{\text{pl},\text{Rd}} - M_{\text{pl},\text{a},\text{Rd}}) \frac{N_c}{N_{ef}}$ where: $\frac{N_c}{N_{ef}} = \eta = 0.48$ $M_{\text{pl},\text{Rd}}$ is design value of the plastic resistance moment of the structural<br>steel section (497.2 kNm) $M_{\text{pl},\text{Rd}}$ is design value of plastic resistance moment of the composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                    | ess-     |            |     |
| As shown in Section 8.9.1, the shear buckling resistance does not need to be verified for the steel section.<br><b>Plastic resistance to vertical shear</b><br>The resistance to vertical shear $(V_{pl,Rd})$ should be taken as the resistance of the structural steel section $(V_{pl,Rd})$ .<br>$V_{pl,Rd} = 190.92 \text{ kN}$<br>Maximum design shear for the composite stage is $V_{Ed} = 238.1 \text{ kN}$<br>$\frac{V_{Ld}}{V_{pl,Rd}} = \frac{190.92}{870.9} = 0.2 < 1.0$<br>Therefore the vertical shear resistance of the section is adequate.<br><b>8.11.2 Resistance to bending</b><br>As $\frac{V_{pl,R,Rd}}{2} = \frac{870.9}{2} = 435.5 \text{ kN} > V_{Ed} (190.92 \text{ kN})$<br>No reduction in the bending resistance of the steel section need be made on account of the shear stress in the beam.<br><b>One shear connector per trough</b> , the shear connection provided can only satisfy the lower of the minimum shear connection requirements; the simplified method of calculating the design resistance to bending must therefore be used:<br>$M_{Rd} = M_{pl,R,Rd} + (M_{pl,Rd} - M_{pl,R,Rd}) \frac{N_c}{N_{cf}}$<br>where:<br>$\frac{N_c}{N_{cf}} = \eta = 0.48$<br>$M_{pl,R,Rd}$ is design value of the plastic resistance moment of the structural steel section (497.2 kNm)<br>$M_{pl,Rd}$ is design value of plastic resistance moment of the composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.11.1 Vertical shear resistance                                                                                                                                                                                                   |          |            |     |
| verified for the steel section.<br><b>Plastic resistance to vertical shear</b><br>The resistance to vertical shear ( $V_{pl,Rd}$ ) should be taken as the resistance of the<br>structural steel section ( $V_{pl,Rd}$ ).<br>$V_{pl,aRd} = 190.92 \text{ kN}$<br>Maximum design shear for the composite stage is $V_{Ed} = 238.1 \text{ kN}$<br>Maximum design shear for the composite stage is $V_{Ed} = 238.1 \text{ kN}$<br>Sheet 8<br>Sheet 5<br>$\frac{V_{rd}}{V_{pl,a,Rd}} = \frac{190.92}{870.9} = 0.2 < 1.0$<br>Therefore the vertical shear resistance of the section is adequate.<br><b>8.11.2 Resistance to bending</b><br>As $\frac{V_{pl,a,Rd}}{2} = \frac{870.9}{2} = 435.5 \text{ kN} > V_{Ed} (190.92 \text{ kN})$<br>No reduction in the bending resistance of the steel section need be made on<br>account of the shear stress in the beam.<br><b>One shear connector per trough</b> ( $n_r = 1$ )<br>For one shear connector per trough ( $n_r = 1$ )<br>For one shear connector per trough ( $n_r = 1$ )<br>For one shear connector per trough ( $n_r = 1$ )<br>For one shear connector per trough ( $n_r = 1$ )<br>for one shear connector per trough ( $n_r = 1$ )<br>where:<br>$\frac{N_{e,f}}{N_{e,f}} = \eta = 0.48$<br>$M_{pl,a,Rd}$ is design value of the plastic resistance moment of the structural<br>steel section (497.2 kNm)<br>$M_{pl,Rd}$ is design value of plastic resistance moment of the composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Shear buckling                                                                                                                                                                                                                     |          |            |     |
| The resistance to vertical shear $(V_{pl,Rd})$ should be taken as the resistance of the structural steel section $(V_{pl,R,d})$ .<br>$V_{pl,a,Rd} = 190.92 \text{ kN}$<br>Maximum design shear for the composite stage is $V_{Ed} = 238.1 \text{ kN}$<br>$\frac{V_{Ed}}{V_{pl,a,Rd}} = \frac{190.92}{870.9} = 0.2 < 1.0$<br>Therefore the vertical shear resistance of the section is adequate.<br><b>8.11.2 Resistance to bending</b><br>As $\frac{V_{pl,a,Rd}}{2} = \frac{870.9}{2} = 435.5 \text{ kN} > V_{Ed} (190.92 \text{ kN})$<br>No reduction in the bending resistance of the steel section need be made on account of the shear stress in the beam.<br><b>One shear connector per trough</b> $(n_r = 1)$<br>For one shear connector per trough $(n_r = 1)$<br>For one shear connector per trough $(n_r = 1)$<br>For one shear connector per trough $(N_{cr})$<br>where:<br>$\frac{N_{c}}{N_{c,r}} = \eta = 0.48$<br>$M_{pl,a,Rd}$ is design value of the plastic resistance moment of the structural steel section (497.2 kNm)<br>$M_{pl,Rd}$ is design value of plastic resistance moment of the composite<br>Sheet 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e                                                                                                                                                                                                                                  | to be    |            |     |
| structural steel section ( $V_{\text{pl,a,Rd}}$ ).<br>$V_{\text{pl,a,Rd}} = 190.92 \text{ kN}$ Sheet 8<br>Maximum design shear for the composite stage is $V_{\text{Ed}} = 238.1 \text{ kN}$ Sheet 5<br>$\frac{V_{\text{Ed}}}{V_{\text{pl,a,Rd}}} = \frac{190.92}{870.9} = 0.2 < 1.0$<br>Therefore the vertical shear resistance of the section is adequate.<br><b>8.11.2 Resistance to bending</b><br>As $\frac{V_{\text{pl,a,Rd}}}{2} = \frac{870.9}{2} = 435.5 \text{ kN} > V_{\text{Ed}} (190.92 \text{ kN})$<br>No reduction in the bending resistance of the steel section need be made on<br>account of the shear stress in the beam.<br><b>One shear connector per trough</b> ( $n_r = 1$ )<br>For one shear connector per trough, the shear connection provided can only<br>satisfy the lower of the minimum shear connection requirements; the simplified<br>method of calculating the design resistance to bending must therefore be used:<br>$M_{\text{Rd}} = M_{\text{pl,a,Rd}} + (M_{\text{pl,Rd}} - M_{\text{pl,a,Rd}}) \frac{N_c}{N_{\text{ef}}}$<br>where:<br>$\frac{N_c}{N_{cf}} = \eta = 0.48$<br>$M_{\text{pl,a,Rd}}$ is design value of the plastic resistance moment of the structural<br>steel section (497.2 kNm)<br>$M_{\text{pl,Rd}}$ is design value of plastic resistance moment of the composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Plastic resistance to vertical shear                                                                                                                                                                                               |          |            |     |
| Maximum design shear for the composite stage is $V_{Ed} = 238.1 \text{ kN}$<br>$\frac{V_{Ed}}{V_{pl,a,Rd}} = \frac{190.92}{870.9} = 0.2 < 1.0$ Therefore the vertical shear resistance of the section is adequate.<br><b>8.11.2 Resistance to bending</b><br>As $\frac{V_{pl,a,Rd}}{2} = \frac{870.9}{2} = 435.5 \text{ kN} > V_{Ed} (190.92 \text{ kN})$<br>No reduction in the bending resistance of the steel section need be made on account of the shear stress in the beam.<br><b>One shear connector per trough </b> $(n_r = 1)$<br>For one shear connector per trough $(n_r = 1)$<br>For one shear connector per trough $(n_r = 1)$<br>For one shear connector per trough $(n_{r_s} = 1)$<br>For one shear connector per trough $(n_{r_s} = 1)$<br>$M_{Rd} = M_{pl,a,Rd} + (M_{pl,Rd} - M_{pl,a,Rd}) \frac{N_c}{N_{cf}}$<br>where:<br>$\frac{N_c}{N_{c,f}} = \eta = 0.48$<br>$M_{pl,a,Rd}$ is design value of the plastic resistance moment of the structural steel section (497.2 kNm)<br>$M_{pl,Rd}$ is design value of plastic resistance moment of the composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                    | e of the | 6.2.2.2(1) | )   |
| $\frac{V_{Ed}}{V_{pl,a,Rd}} = \frac{190.92}{870.9} = 0.2 < 1.0$ Therefore the vertical shear resistance of the section is adequate.<br><b>8.11.2 Resistance to bending</b> As $\frac{V_{pl,a,Rd}}{2} = \frac{870.9}{2} = 435.5 \text{ kN} > V_{Ed} (190.92 \text{ kN})$ No reduction in the bending resistance of the steel section need be made on account of the shear stress in the beam.<br><b>One shear connector per trough</b> ( $n_r = 1$ ) For one shear connector per trough, the shear connection provided can only satisfy the lower of the minimum shear connection requirements; the simplified method of calculating the design resistance to bending must therefore be used:<br>$M_{Rd} = M_{pl,a,Rd} + (M_{pl,Rd} - M_{pl,a,Rd}) \frac{N_c}{N_{cf}}$ where:<br>$\frac{N_c}{N_{c,f}} = \eta = 0.48$ $M_{pl,a,Rd}$ is design value of the plastic resistance moment of the structural steel section (497.2 kNm)<br>$M_{pl,Rd}$ is design value of plastic resistance moment of the composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $V_{\rm pl,a,Rd}$ = 190.92 kN                                                                                                                                                                                                      |          | Sheet 8    |     |
| Therefore the vertical shear resistance of the section is adequate.6.2.2.4(1) <b>8.11.2 Resistance to bending</b><br>As $\frac{V_{pl,a,Rd}}{2} = \frac{870.9}{2} = 435.5 \text{ kN} > V_{Ed} (190.92 \text{ kN})$ 6.2.2.4(1)No reduction in the bending resistance of the steel section need be made on account of the shear stress in the beam.6.2.1.3(5) <b>One shear connector per trough (<math>n_r = 1</math>)</b> 6.2.1.3(5)For one shear connector per trough, the shear connection provided can only satisfy the lower of the minimum shear connection requirements; the simplified method of calculating the design resistance to bending must therefore be used:Eq (6.1) $M_{Rd} = M_{pl,a,Rd} + (M_{pl,Rd} - M_{pl,a,Rd}) \frac{N_c}{N_{cf}}$ Eq (6.1)where: $\frac{N_c}{N_{cf}} = \eta = 0.48$ Sheet 8 $M_{pl,Rd}$ is design value of the plastic resistance moment of the structural steel section (497.2 kNm)Sheet 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Maximum design shear for the composite stage is $V_{\rm Ed} = 238.1$ kN                                                                                                                                                            |          |            |     |
| Therefore the vertical shear resistance of the section is adequate.6.2.2.4(1) <b>8.11.2 Resistance to bending</b><br>As $\frac{V_{pl,a,Rd}}{2} = \frac{870.9}{2} = 435.5 \text{ kN} > V_{Ed} (190.92 \text{ kN})$ 6.2.2.4(1)No reduction in the bending resistance of the steel section need be made on account of the shear stress in the beam.6.2.1.3(5) <b>One shear connector per trough (<math>n_r = 1</math>)</b> 6.2.1.3(5)For one shear connector per trough, the shear connection provided can only satisfy the lower of the minimum shear connection requirements; the simplified method of calculating the design resistance to bending must therefore be used:Eq (6.1) $M_{Rd} = M_{pl,a,Rd} + (M_{pl,Rd} - M_{pl,a,Rd}) \frac{N_c}{N_{cf}}$ Eq (6.1)where: $\frac{N_c}{N_{cf}} = \eta = 0.48$ Sheet 8 $M_{pl,Rd}$ is design value of the plastic resistance moment of the structural steel section (497.2 kNm)Sheet 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{V_{\rm Ed}}{V_{\rm pl,a,Rd}} = \frac{190.92}{870.9} = 0.2 < 1.0$                                                                                                                                                            |          |            |     |
| As $\frac{V_{\text{pl},a,\text{Rd}}}{2} = \frac{870.9}{2} = 435.5 \text{ kN} > V_{\text{Ed}} (190.92 \text{ kN})$<br>No reduction in the bending resistance of the steel section need be made on account of the shear stress in the beam.<br><b>One shear connector per trough (<math>n_r = 1</math>)</b><br>For one shear connector per trough, the shear connection provided can only satisfy the lower of the minimum shear connection requirements; the simplified method of calculating the design resistance to bending must therefore be used:<br>$M_{\text{Rd}} = M_{\text{pl},a,\text{Rd}} + (M_{\text{pl},\text{Rd}} - M_{\text{pl},a,\text{Rd}}) \frac{N_c}{N_{\text{cf}}}$<br>where:<br>$\frac{N_c}{N_{c,f}} = \eta = 0.48$<br>$M_{\text{pl},a,\text{Rd}}$ is design value of the plastic resistance moment of the structural steel section (497.2 kNm)<br>$M_{\text{pl},\text{Rd}}$ is design value of plastic resistance moment of the composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Therefore the vertical shear resistance of the section is adequate.                                                                                                                                                                |          |            |     |
| As $\frac{p_{\text{RMM}}}{2} = \frac{0.017}{2} = 435.5 \text{ kN} > V_{\text{Ed}} (190.92 \text{ kN})$<br>No reduction in the bending resistance of the steel section need be made on<br>account of the shear stress in the beam.<br><b>One shear connector per trough</b> $(n_r = 1)$<br>For one shear connector per trough, the shear connection provided can only<br>satisfy the lower of the minimum shear connection requirements; the simplified<br>method of calculating the design resistance to bending must therefore be used:<br>$M_{\text{Rd}} = M_{\text{pl,a,Rd}} + (M_{\text{pl,Rd}} - M_{\text{pl,a,Rd}}) \frac{N_c}{N_{\text{cf}}}$<br>where:<br>$\frac{N_c}{N_{c,f}} = \eta = 0.48$<br>$M_{\text{pl,a,Rd}}$ is design value of the plastic resistance moment of the structural<br>steel section (497.2 kNm)<br>$M_{\text{pl,Rd}}$ is design value of plastic resistance moment of the composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.11.2 Resistance to bending                                                                                                                                                                                                       |          |            |     |
| account of the shear stress in the beam.<br><b>One shear connector per trough</b> $(n_r = 1)$<br>For one shear connector per trough, the shear connection provided can only<br>satisfy the lower of the minimum shear connection requirements; the simplified<br>method of calculating the design resistance to bending must therefore be used:<br>$M_{\rm Rd} = M_{\rm pl,a,Rd} + (M_{\rm pl,Rd} - M_{\rm pl,a,Rd}) \frac{N_c}{N_{\rm cf}}$<br>where:<br>$\frac{N_c}{N_{\rm c,f}} = \eta = 0.48$<br>$M_{\rm pl,a,Rd}$ is design value of the plastic resistance moment of the structural<br>steel section (497.2 kNm)<br>$M_{\rm pl,Rd}$ is design value of plastic resistance moment of the composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | As $\frac{V_{\text{pl,a,Rd}}}{2} = \frac{870.9}{2} = 435.5 \text{ kN} > V_{\text{Ed}} (190.92 \text{ kN})$                                                                                                                         |          | 6.2.2.4(1) | )   |
| For one shear connector per trough, the shear connection provided can only<br>satisfy the lower of the minimum shear connection requirements; the simplified<br>method of calculating the design resistance to bending must therefore be used:<br>$M_{Rd} = M_{pl,a,Rd} + (M_{pl,Rd} - M_{pl,a,Rd}) \frac{N_c}{N_{cf}}$ $Eq (6.1)$ where:<br>$\frac{N_c}{N_{c,f}} = \eta = 0.48$ $M_{pl,a,Rd}$ is design value of the plastic resistance moment of the structural<br>steel section (497.2 kNm)<br>$M_{pl,Rd}$ is design value of plastic resistance moment of the composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                  | le on    |            |     |
| $M_{\rm Rd} = M_{\rm pl,a,Rd} + (M_{\rm pl,Rd} - M_{\rm pl,a,Rd}) \frac{N_{\rm c}}{N_{\rm cf}}$ where:<br>$\frac{N_{\rm c}}{N_{\rm c,f}} = \eta = 0.48$ $M_{\rm pl,a,Rd} \text{ is design value of the plastic resistance moment of the structural steel section (497.2 kNm)}$ $M_{\rm pl,Rd} \text{ is design value of plastic resistance moment of the composite}$ Eq (6.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | For one shear connector per trough, the shear connection provided can<br>satisfy the lower of the minimum shear connection requirements; the si                                                                                    | mplified | 6.2.1.3(5) | )   |
| $\frac{N_{\rm c}}{N_{\rm c,f}} = \eta = 0.48$ $M_{\rm pl,a,Rd}  \text{is design value of the plastic resistance moment of the structural steel section (497.2 kNm)}$ $M_{\rm pl,Rd}  \text{is design value of plastic resistance moment of the composite}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                    |          | Eq (6.1)   |     |
| $M_{\rm pl,a,Rd}  \text{is design value of the plastic resistance moment of the structural} \\ M_{\rm pl,a,Rd}  \text{is design value of plastic resistance moment of the composite} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | where:                                                                                                                                                                                                                             |          |            |     |
| steel section (497.2 kNm) $M_{pl,Rd}$ is design value of plastic resistance moment of the composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{N_{\rm c}}{N_{\rm c,f}} = \eta = 0.48$                                                                                                                                                                                      |          |            |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                    | ctural   | Sheet 8    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                    | te       |            |     |

| Example 8 - Simply supported composite beam                                                                                                                                                             | Sheet 15 | of 20   | Rev |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|-----|
| For full shear connection $N_{pl,a}$ (2618 kN) < $N_{c,f}$ (2981 kN) and so the p neutral axis of the composite section lies within the concrete.                                                       | olastic  |         | 1   |
| Therefore, the design plastic resistance moment of the composite section<br>full shear connection can be determined from:                                                                               | n with   |         |     |
| $M_{\text{pl.Rd}} = N_{\text{pl,a}} \left[ \frac{h_{\text{a}}}{2} + h_{\text{s}} - \frac{x_{\text{c}}}{2} \right]$                                                                                      |          |         |     |
| where:                                                                                                                                                                                                  |          |         |     |
| $x_{\rm c} = \left(\frac{N_{\rm pl,a}}{N_{\rm c,f}}\right) \times h_c = \left(\frac{2618}{2981}\right) \times 70 = 61.5 \text{ mm}$                                                                     |          |         |     |
| $ \begin{array}{c}     h_{c} \\     \underline{v} \\     h_{p} \\     x_{c} \end{array}  h_{s} $                                                                                                        |          |         |     |
|                                                                                                                                                                                                         |          |         |     |
| Figure 8.7                                                                                                                                                                                              |          |         |     |
| $M_{\text{pl.Rd}} = 2618 \times \left[\frac{529.1}{2} + 130 - \frac{61.5}{2}\right] \times 10^{-3} = 952.4 \text{ kNm}$                                                                                 |          |         |     |
| Therefore, the design resistance moment of the composite section is:                                                                                                                                    |          |         |     |
| $M_{\rm Rd} = M_{\rm pl,a,Rd} + \left(M_{\rm pl,Rd} - M_{\rm pl,a,Rd}\right) \frac{N_{\rm c}}{N_{\rm cf}}$                                                                                              |          |         |     |
| $M_{\rm Rd} = 497.2 + (952.4 - 497.2) \times 0.48 = 715.7 \text{ kNm}$                                                                                                                                  |          |         |     |
| The design bending moment is:                                                                                                                                                                           |          |         |     |
| $M_{\rm Ed}$ = 572.8 kNm                                                                                                                                                                                |          | Sheet 5 |     |
| $\frac{M_{\rm Ed}}{M_{\rm Rd}} = \frac{572.8}{715.7} = 0.80 < 1.0$                                                                                                                                      |          |         |     |
| Therefore the resistance moment of the composite beam is adequate.                                                                                                                                      |          |         |     |
| Two shear connectors per trough $(n_r = 2)$                                                                                                                                                             |          |         |     |
| For the case of two shear connectors per trough, the simplified method for one shear connector per trough may conservatively be used, or rigid theory from 6.2.1.2 may be used, as shown below:         |          | 6.2.1.2 |     |
| With partial shear connection, the axial force in the concrete flange is $N_{\rm pl,a}$ (2618 kN) > $N_{\rm c}$ (2080 kN) the plastic neutral axis of the composisection lies within the steel section. |          |         |     |
| Assume that the plastic neutral axis lies within the top flange a distance below the top of the top flange of the section, where $x_{pl}$ is given by:                                                  | Xpl      |         |     |
|                                                                                                                                                                                                         |          |         |     |

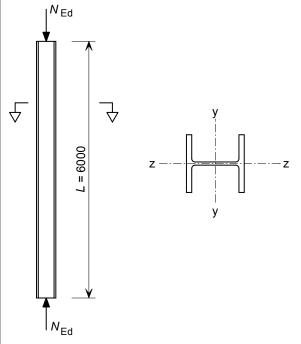


| Example 8 - Simply supported composite beam Sheet 17                                                                                                              | of 20                  | Rev     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|
| $\frac{A_{\rm sf} f_{\rm yd}}{s_{\rm f}} \ge \frac{v_{\rm Ed} h_{\rm f}}{\cot \theta_{\rm f}} \qquad (\theta \text{ and } \theta_{\rm f} \text{ are synonymous})$ | BS EN 19<br>Eq (6.21)  |         |
| where:                                                                                                                                                            |                        |         |
| $v_{\rm Ed}$ is the design longitudinal shear stress in the concrete slab                                                                                         |                        |         |
| $f_{\rm yd}$ is the design yield strength of the reinforcing mesh                                                                                                 |                        |         |
| $f_{\rm yd} = \frac{f_{\rm y}}{\gamma_{\rm M0}} = \frac{500}{1.15} = 434.8 \text{ N/mm}^2$                                                                        |                        |         |
| $h_{\rm f}$ is taken as the depth of concrete above the profiled decking                                                                                          |                        |         |
| $h_{\rm f} = h_{\rm c} = 70 \text{ mm}$                                                                                                                           |                        |         |
| $\theta_{\rm f}$ given in BS EN 1992-1-1 as the angle of the compression struts.                                                                                  | 6.2.4(4)               |         |
| To prevent crushing of the compression struts in the flange model, Eurocode 2 limits the value of $\theta_f$ to:                                                  |                        |         |
| $1.0 \leq \cot\theta_{\rm f} \leq 2.0, 45^{\circ} \leq \theta_{\rm f} \leq 26.5^{\circ}$                                                                          | BS EN 19               |         |
| To minimise the amount of reinforcement, try:                                                                                                                     | 6.2.4(4) a<br>Table NA |         |
| $\theta_{\rm f} = 26.5^{\circ}$                                                                                                                                   |                        |         |
| $\left(\frac{A_{\rm sf}}{s_{\rm f}}\right) = A_{\rm t}$ (for the failure plane shown in Figure 8.9)                                                               | Figure 6.              | 16      |
| $A_{\rm t}$ is the cross-sectional area of transverse reinforcement (mm <sup>2</sup> /m)                                                                          |                        |         |
| Therefore, the verification becomes:                                                                                                                              |                        |         |
| $A_{\rm t} f_{\rm yd} > \frac{v_{\rm Ed} h_{\rm f}}{\cot \theta_{\rm f}}$                                                                                         |                        |         |
| And the required area of tensile reinforcement $(A_t)$ must satisfy the following:                                                                                |                        |         |
| $A_{\rm t} > \frac{v_{\rm Ed} h_{\rm f}}{f_{\rm yd} \cot \theta_{\rm f}}$                                                                                         |                        |         |
| The longitudinal shear stresses is given by:                                                                                                                      | BS EN 1                | 992-1-1 |
| $v_{\rm Ed} = \frac{\Delta F_{\rm d}}{h_{\rm f}  \Delta x}$                                                                                                       | 6.2.4(3)               |         |
| where:                                                                                                                                                            |                        |         |
| $\Delta x$ is the critical length under consideration, which for this example is the distance between the maximum bending moment and the support.                 |                        |         |
| $\Delta x = \frac{L}{2} = \frac{12}{2} = 6 \text{ m}$                                                                                                             |                        |         |
| $\Delta F_{\rm d} = \frac{N_{\rm c}}{2}$                                                                                                                          |                        |         |
| For $n_{\rm r} = 1$ , $\Delta F_{\rm d} = \frac{1252}{2} = 626$ kN; and for $n_{\rm r} = 2$ , $\Delta F_{\rm d} = \frac{2064}{2} = 1032$ kN                       |                        |         |
| $h_{\rm f} = 70 \ {\rm mm}$                                                                                                                                       |                        |         |

| Example 8 - Simply supported composite beam                                                                                                                            | Sheet | 18 | of 20                 | Rev         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-----------------------|-------------|
| For $n_{\rm r} = 1$ , $v_{\rm Ed} = \frac{\Delta F_{\rm d}}{h_{\rm f} \Delta x} = \frac{626 \times 10^3}{70 \times 6000} = 1.49 \text{ N/mm}^2$                        |       |    |                       |             |
| For $n_{\rm r} = 2$ , $v_{\rm Ed} = \frac{\Delta F_{\rm d}}{h_{\rm f} \Delta x} = \frac{1032 \times 10^3}{70 \times 6000} = 2.46 \text{ N/mm}^2$                       |       |    |                       |             |
| For $n_{\rm r} = 1$ , $\frac{v_{\rm Ed}h_{\rm f}}{f_{\rm yd}\cot\theta_{\rm f}} = \frac{1.49 \times 70}{434.8 \times \cot(26.5^\circ)} = 0.119 \text{ mm}^2/\text{mm}$ |       |    |                       |             |
| For $n_{\rm r} = 2$ , $\frac{v_{\rm Ed}h_{\rm f}}{f_{\rm yd}\cot\theta_{\rm f}} = \frac{2.46 \times 70}{434.8 \times \cot(26.5^\circ)} = 0.196  {\rm mm^2/mm}$         |       |    |                       |             |
| Therefore, the area of tensile reinforcement required is:                                                                                                              |       |    |                       |             |
| For $n_{\rm r} = 1$ , $A_{\rm t} \ge 119  {\rm mm^2/m}$                                                                                                                |       |    |                       |             |
| For $n_{\rm r} = 2, A_{\rm t} \ge 196  {\rm mm}^2/{\rm m}$                                                                                                             |       |    |                       |             |
| The reinforcement provided is A252 mesh, for which:                                                                                                                    |       |    |                       |             |
| $A_{\rm t} = 252 \text{ mm}^2/\text{m} > 197 \text{ mm}^2/\text{m}$                                                                                                    |       |    |                       |             |
| Therefore an A252 mesh is adequate.                                                                                                                                    |       |    |                       |             |
| Crushing of the concrete flange<br>Verify that:                                                                                                                        |       |    | BS EN                 | 1992-1-1    |
| $v_{\rm Ed} \leq v f_{\rm cd} \sin \theta_{\rm f} \cos \theta_{\rm f}$                                                                                                 |       |    | 6.2.4(4)              | Eq (6.22)   |
| where:                                                                                                                                                                 |       |    |                       |             |
| $v = 0.6 \times \left[ 1 - \frac{f_{\rm ck}}{250} \right]$                                                                                                             |       |    | BS EN 19<br>Table NA  |             |
| $v = 0.6 \times \left[ 1 - \frac{25}{250} \right] = 0.54$                                                                                                              |       |    |                       |             |
| $\theta_{\rm f} = 26.5^{\circ}$                                                                                                                                        |       |    |                       |             |
| $f_{cd}$ is the design compressive strength of concrete according to Eurocode 2 thus,                                                                                  |       |    |                       |             |
| $f_{ m cd} = lpha_{ m cc} rac{f_{ m ck}}{\gamma_{ m c}}$                                                                                                              |       |    | BS EN 19<br>3.1.6(1)P |             |
| $\alpha_{\rm cc} = 0.85$                                                                                                                                               |       |    | Table NA              | <b>A</b> .1 |
| $f_{\rm cd} = 0.85 \times \frac{25}{1.5} = 14.2 \text{ N/mm}^2$                                                                                                        |       |    |                       |             |
| $vf_{\rm cd} \sin\theta_{\rm f} \cos\theta_{\rm f} = 0.54 \times 14.2 \times \sin(26.5^{\circ}) \times \cos(26.5^{\circ}) = 3.04 \text{ N/mm}^2$                       |       |    |                       |             |
| $v_{\rm Ed} = 2.46 \text{ N/mm}^2 < 3.04 \text{ N/mm}^2$                                                                                                               |       |    |                       |             |
| Therefore the crushing resistance of the concrete is adequate.                                                                                                         |       |    |                       |             |
|                                                                                                                                                                        |       |    |                       |             |
|                                                                                                                                                                        |       |    |                       |             |
|                                                                                                                                                                        |       |    |                       |             |
|                                                                                                                                                                        |       |    |                       |             |

| Example 8 - Simply supported composite beam                                                                                                                                                                                                              | Sheet 19 | of 21                 | Rev |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|-----|
| 8.12 Verification at SLS                                                                                                                                                                                                                                 |          |                       |     |
| 8.12.1 Modular ratios                                                                                                                                                                                                                                    |          |                       |     |
| For short term loading, the secant modulus of elasticity should be used sheet 2, $E_{cm} = 31 \text{ kN/mm}^2$ . This corresponds to a modular ratio of                                                                                                  | . From   | BS EN 19<br>Table 3.1 |     |
| $n_0 = \frac{E_a}{E_{cm}} = \frac{210}{31} = 6.77$                                                                                                                                                                                                       |          | 5.4.2.2               |     |
| For buildings not intended mainly for storage the effects of creep in co-<br>beams may be taken in to account by using an effective modular $E_{c,eff}$ = and thus,                                                                                      |          | 5.4.2.2(1)            | 1)  |
| $n = \frac{E_{\rm a}}{E_{\rm ceff}} = \frac{210}{15.5} = 13.55$                                                                                                                                                                                          |          |                       |     |
| For dynamic conditions (i.e. natural frequency calculation), the value of should be determined according to SCI publication P354, <i>Design of flow vibration – a new approach</i> which gives $E_c = 38 \text{ kN/mm}^2$ , and so the modular ratio is: | ors for  | P354                  |     |
| $n_d = \frac{E_a}{E_c} = \frac{210}{38} = 5.53$                                                                                                                                                                                                          |          |                       |     |
| 8.12.2 Second moment of area of the composite section                                                                                                                                                                                                    |          |                       |     |
| For the case $n_r = 1$ , the effects of the partial shear connection on the deflections would have to be considered as $\eta < 0.5$ . Therefore only the where $n_r = 2$ is considered here.                                                             | e case   |                       |     |
| Assuming $b_{\text{eff}} = 3.08$ m (corresponding to $n_r = 2$ ), the values of the semimerator of area (in equivalent steel units) are as follows:                                                                                                      | econd    |                       |     |
| For $n_0 = 6.77$ , $I_c = 137,100 \text{ cm}^4 (z_{el} = 541 \text{ mm from bottom flange})$                                                                                                                                                             | ge)      |                       |     |
| For $n = 13.55$ , $I_c = 117,800 \text{ cm}^4$ ( $z_{el} = 490 \text{ mm}$ from bottom flange                                                                                                                                                            | ge)      |                       |     |
| For $n_{\rm d} = 5.53$ , $I_{\rm c} = 141,600 \text{ cm}^4$ ( $z_{\rm el} = 554 \text{ mm}$ from bottom flange                                                                                                                                           | ge)      |                       |     |
| 8.12.3 Vertical deflections                                                                                                                                                                                                                              |          |                       |     |
| For the appropriate combination of actions, the deflections are:                                                                                                                                                                                         |          |                       |     |
| Deflections of steel beam due to permanent loads applied during constr                                                                                                                                                                                   | uction   |                       |     |
| $w_{\rm g,a} = \frac{5g_1L^4}{384EI_y}$                                                                                                                                                                                                                  |          |                       |     |
| $g_1 = 3.5g_{k,1} + g_{k,2} = (3.5 \times 2.53) + 1.0 = 9.86 \text{ kN/m}$                                                                                                                                                                               |          |                       |     |
| $w_{g1,a} = \frac{5 \times 9.86 \times 10^3 \times 12^4}{384 \times 210 \times 10^9 \times 41100 \times 10^{-8}} \times 10^3 = 30.8 \text{ mm}$                                                                                                          |          |                       |     |
| Permanent actions on composite beam                                                                                                                                                                                                                      |          |                       |     |
| $w_{g} = \frac{5 g L^4}{384 E I}$                                                                                                                                                                                                                        |          |                       |     |
| $g = 3.5 g_{k,3} = 3.5 \times 0.5 = 1.75 \text{ kN/m}$                                                                                                                                                                                                   |          |                       |     |
|                                                                                                                                                                                                                                                          |          |                       |     |

| Example 8 - Simply supported composite beam                                                                                                                                                                 | Sheet 20       | of 20    | Rev     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|---------|
| Variable actions on composite beam                                                                                                                                                                          |                |          |         |
| $5 q L^4$                                                                                                                                                                                                   |                |          |         |
| $w_{\rm q} = \frac{5  q  L^4}{384 E I}$                                                                                                                                                                     |                |          |         |
| q = 11.6  kN/m                                                                                                                                                                                              |                | Sheet 4  |         |
| $w_{\rm q} = \frac{5 \times 11.6 \times 10^3 \times 12^4}{384 \times 210 \times 10^9 \times 117800 \times 10^{-8}} \times 10^3 = 12.7 \text{ mm}$                                                           |                |          |         |
| Total deflection is, $w_{\text{Total}} = 30.8 + 1.9 + 12.7 = 45.4 \text{ mm} < \text{L}/200 =$                                                                                                              | 60 mm          | BS EN 19 | 993-1-1 |
| Deflection due to variable actions is $w_q = 12.7 \text{ mm} < L/360 = 33 \text{ mm}$                                                                                                                       | n              | NA.2.23  |         |
| 8.12.4 SLS stress verification                                                                                                                                                                              |                |          |         |
| To validate the assumptions used to calculate the vertical deflections, the<br>in the steel and concrete should be calculated to ensure that neither mate<br>exceeds its limit at SLS.                      |                |          |         |
| Stress in steel section due to permanent loads applied during constructio                                                                                                                                   | n              |          |         |
| $\sigma_{\rm G1,a} = \frac{g_1 L^2 z_{\rm el}}{8I_{\rm y}} = \frac{9.86 \times 10^3 \times 12^2 \times 265 \times 10^{-3}}{8 \times 41100 \times 10^{-8}} \times 10^{-6} = 114.4 \text{ N/mm}^2$            |                |          |         |
| Stress in steel section due to actions on composite beam                                                                                                                                                    |                |          |         |
| $\sigma_{\rm a} = \frac{(g+q)L^2 z_{\rm el}}{8I} = \frac{(1.75+11.6)\times10^3\times12^2\times490\times10^{-3}}{8\times117800\times10^{-8}}\times10^{-6} = 100.0 \text{ N/m}$                               | m <sup>2</sup> |          |         |
| $\sigma_{\rm a} = 114.4 + 100.0 = 214.4 \text{ N/mm}^2 < 275 \text{ N/mm}^2$                                                                                                                                |                |          |         |
| Stress in concrete due to actions on composite beam                                                                                                                                                         |                |          |         |
| $\sigma_{\rm c} = \frac{(g+q)L^2 z_{\rm el}}{8In} = \frac{(1.75+11.6)\times10^3\times12^2\times(529.1+130-490)\times10^{-3}}{8\times117800\times10^{-8}\times13.55}\times10^{-6}$                           |                |          |         |
| $= 2.6 \text{ N/mm}^2$                                                                                                                                                                                      |                |          |         |
| $\sigma_{\rm c} = 2.6 \text{ N/mm}^2 < f_{\rm cd} = 16.78 \text{ N/mm}^2$                                                                                                                                   |                |          |         |
| 8.12.5 Natural Frequency                                                                                                                                                                                    |                |          |         |
| Actions considered when calculating the natural frequency of the composite                                                                                                                                  | beam:          |          |         |
| g = 9.86 + 1.75 = 11.61  kN/m                                                                                                                                                                               |                | Sheet 4  |         |
| q = 1.16  kN/m                                                                                                                                                                                              |                | Sheet 4  |         |
| The deflection under these actions is::                                                                                                                                                                     |                |          |         |
| $\delta_{G_1} = \frac{5(g+q)L^4}{384EI} = \frac{5 \times (11.61 + 1.16) \times 10^3 \times 12^4}{384 \times 210 \times 10^9 \times 141600 \times 10^{-8}} \times 10^3 = 11.6 \text{ mm}$                    |                |          |         |
| The natural frequency of the beam is therefore:                                                                                                                                                             |                |          |         |
| $f = \frac{18}{\sqrt{\delta}} = \frac{18}{\sqrt{11.6}} = 5.28$ Hz                                                                                                                                           |                | P354     |         |
| As $5.28 \text{ Hz} > 4 \text{ Hz}$ , the beam is satisfactory for initial calculation purp<br>However, the dynamic performance of the entire floor should be verified<br>a method such as the one in P354. |                | P354     |         |


| 9 Pinned column using a Class 3 section                         |           |             |                                             | BS E     | EN 19           | s are to<br>93-1-1:<br>uding its |        |
|-----------------------------------------------------------------|-----------|-------------|---------------------------------------------|----------|-----------------|----------------------------------|--------|
| CALCULATION SHEET                                               |           |             | Checked by                                  | DGB      | Date            | Jul 2                            | 009    |
| Fax: (01344) 636570                                             | Client    | SCI         | Made by                                     | MEB      | Date            | Feb 2                            | 2009   |
| Silwood Park, Ascot, Berks SL5 7QN<br>Telephone: (01344) 636525 |           |             |                                             |          |                 |                                  |        |
| Subject Example 9 - Pinned column using                         |           |             |                                             | nn using | g a Cla         | ss 3 s                           | ection |
|                                                                 | Job Title | Worked exam | Worked examples to the Eurocodes with UK NA |          |                 |                                  |        |
|                                                                 | Job No.   | CDS164      |                                             | Sheet 1  | of <sup>′</sup> | 7                                | Rev    |

National Annex, unless otherwise

stated.

## 9.1 Scope

The column shown in Figure 9.1 is pin-ended about both axes and has no intermediate restraint. Design the column in S355 steel.





The design aspects covered in this example are:

- Cross section classification
- Cross-sectional resistance
  - Compression
- Buckling resistance
  - Flexural
  - Torsional
  - Torsional-flexural

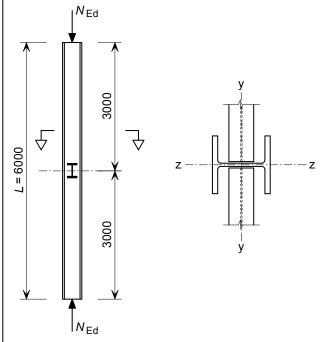
| Example 9 - Pinned column using a                                      | Class3 section                                                      | Sheet 2   | of 7 Rev      |
|------------------------------------------------------------------------|---------------------------------------------------------------------|-----------|---------------|
| 9.2 Design value of f                                                  | orce for Ultimate Lin                                               | nit State |               |
| Design compression force $N_{\rm Ed}$ =                                | 3500 kN                                                             |           |               |
|                                                                        |                                                                     |           |               |
| 9.3 Section propertie                                                  | S                                                                   |           |               |
| $356 \times 368 \times 129$ UKC in S355 stee                           | l                                                                   |           |               |
| From section property tables:                                          |                                                                     |           |               |
| Depth                                                                  | h = 355.6  mm                                                       |           | P363          |
| Width                                                                  | b = 368.6  mm                                                       |           |               |
| Web thickness                                                          | $t_{\rm w} = 10.4 \text{ mm}$                                       |           |               |
| Flange thickness                                                       | $t_{\rm f} = 17.5  \rm mm$                                          |           |               |
| Root radius                                                            | r = 15.2  mm                                                        |           |               |
| Depth between fillets<br>Padius of gyration v axis                     | d = 290.2  mm<br>$i_y = 15.6 \text{ cm}$                            |           |               |
| Radius of gyration y axis<br>Radius of gyration z axis                 | $i_y = 15.0 \text{ cm}$<br>$i_z = 9.43 \text{ cm}$                  |           |               |
| Torsional constant                                                     | $I_z = 9.45 \text{ cm}^4$<br>$I_T = 153 \text{ cm}^4$               |           |               |
|                                                                        | $I_{\rm T} = 153  {\rm cm}^{6}$<br>$I_{\rm w} = 4.18  {\rm dm}^{6}$ |           |               |
| Warping constant<br>Area                                               | $I_{\rm w} = 4.18  {\rm dm}$<br>$A = 164  {\rm cm}^2$               |           |               |
| Modulus of elasticity                                                  | $E = 210\ 000\ \text{N/mm}$                                         | 2         | 3.2.6(1)      |
| Shear modulus                                                          | $G \approx 81\ 000\ \text{N/mm}^2$                                  |           |               |
| For buildings that will be built in the                                |                                                                     | ne yield  | NA.2.4        |
| strength $(f_y)$ and the ultimate streng                               | •                                                                   |           |               |
| obtained from the product standard                                     | Where a range is given, the l                                       | owest     |               |
| nominal value should be used.                                          |                                                                     |           |               |
| For S355 steel and 16 < $t \le 40$ mm                                  | n                                                                   |           | BS EN 10025-2 |
| Yield strength $f_y = R_{eH} = 345$ N                                  | <sup>1</sup> /mm <sup>2</sup>                                       |           | Table 7       |
| 9.4 Cross section cla                                                  | ssification                                                         |           |               |
| $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{345}} = 0.83$ |                                                                     |           | Table 5.2     |
| Outstand of compression flange                                         |                                                                     |           |               |
| $c = \frac{b - t_{w} - 2r}{2} = \frac{368.6 - 10}{2}$                  | $\frac{0.4 - (2 \times 15.2)}{2} = 163.9 \text{ mm}$                |           |               |
| _                                                                      | 2                                                                   |           |               |
| $\frac{c}{t_{\rm f}} = \frac{163.9}{17.5} = 9.37$                      |                                                                     |           |               |
| <sup>r</sup> f 17.3                                                    |                                                                     |           |               |
| The limiting value for Class 2 is $\frac{c}{t_1}$                      |                                                                     |           |               |
| The limiting value for Class 3 is $\frac{c}{t_1}$                      |                                                                     |           |               |
| 8.30 < 9.37 < 11.62                                                    |                                                                     |           |               |
| Therefore the flange in compression                                    | n is Class 3                                                        |           |               |
| _                                                                      |                                                                     |           |               |
|                                                                        |                                                                     |           |               |

| Example 9 - Pinned column using a Class3 section Sh                                                                           | eet 3 | of 7     | Rev                          |
|-------------------------------------------------------------------------------------------------------------------------------|-------|----------|------------------------------|
| Web subject to compression                                                                                                    |       |          |                              |
| c = d = 290.2  mm                                                                                                             |       |          |                              |
| $\frac{c}{2} = \frac{290.2}{2} = 27.90$                                                                                       |       |          |                              |
| <i>t</i> <sub>w</sub> 10.4                                                                                                    |       |          |                              |
| The limiting value for Class 1 is $\frac{c}{t_{w}} \le 33\varepsilon = 33 \times 0.83 = 27.39$                                |       |          |                              |
| The limiting value for Class 2 is $\frac{c}{t_{\rm f}} \le 38\varepsilon = 38 \times 0.83 = 31.54$                            |       |          |                              |
| 27.39 < 27.90 < 31.54                                                                                                         |       |          |                              |
| Therefore the web is Class 2 under compression.                                                                               |       |          |                              |
| Therefore the section is Class 3 under compression.                                                                           |       |          |                              |
| 9.5 Partial factors for resistance                                                                                            |       |          |                              |
| $\gamma_{M0} = 1.0$                                                                                                           |       | NA.2.15  |                              |
| $\gamma_{\rm M1} = 1.0$                                                                                                       |       |          |                              |
| 9.6 Cross-sectional resistance                                                                                                |       |          |                              |
| 9.6.1 Compression resistance                                                                                                  |       |          |                              |
| Verify that:                                                                                                                  |       |          |                              |
| $\frac{N_{\rm Ed}}{N} \le 1.0$                                                                                                |       | 6.2.4(1) |                              |
| N <sub>c,Rd</sub>                                                                                                             |       |          |                              |
| The design resistance of the cross section for uniform compression is:                                                        |       |          |                              |
| $N_{\rm c,Rd} = \frac{Af_{\rm y}}{M_{\rm c,Rd}}$ (For Class 1, 2 and 3 cross sections)                                        |       |          | $\mathbf{E}_{\alpha}$ (6.10) |
| $\gamma_{M0}$                                                                                                                 |       | 0.2.4(2) | Eq (6.10)                    |
| $N_{\rm c,Rd} = \frac{Af_{\rm y}}{\gamma_{\rm M0}} = \frac{164 \times 10^2 \times 345}{1.0} \times 10^{-3} = 5658 \text{ kN}$ |       | 6.2.4(2) | Eg (6.10)                    |
|                                                                                                                               |       |          | 1 \ /                        |
| $\frac{N_{\rm Ed}}{N_{\rm c,Rd}} = \frac{3500}{5658} = 0.62 < 1.0$                                                            |       | 6.2.4(1) | Eq (6.9)                     |
| Therefore the compression resistance of the cross section is adequate.                                                        |       |          |                              |
|                                                                                                                               |       |          |                              |
| 9.7 Member buckling resistance                                                                                                |       |          |                              |
| 9.7.1 Buckling length                                                                                                         |       |          |                              |
| As the column is pin ended with no intermediate restraints, the buckling $L_{cr}$ may be taken as:                            | ength |          |                              |
| $L_{\rm cr} = L = 6000 \text{ mm}$                                                                                            |       |          |                              |
|                                                                                                                               |       |          |                              |

| Example 9 - Pinned column using a Class3 section                                                                                                                                                             | Sheet 4 | of 7                    | Rev |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------|-----|
| 9.7.2 Flexural buckling resistance                                                                                                                                                                           |         |                         |     |
| The resistance to flexural buckling about the minor axis is the critical c this example. Therefore the flexural buckling resistance $(N_{b,Rd})$ is deter for the <i>z</i> - <i>z</i> axis only.             |         |                         |     |
| Verify that                                                                                                                                                                                                  |         |                         |     |
| $\frac{N_{\rm Ed}}{N_{\rm b,Rd}} \le 1.0$                                                                                                                                                                    |         | 6.3.1.1(1)<br>Eq (6.46) |     |
| The design buckling resistance is determined from:                                                                                                                                                           |         |                         |     |
| $N_{\rm b,Rd} = \frac{\chi A f_{\rm y}}{\gamma_{\rm M1}}$ (For Class 1, 2 and 3 cross-sections)                                                                                                              |         | 6.3.1.1(3)<br>Eq (6.47) |     |
| $\chi$ is the reduction factor for the buckling curve and is determined from                                                                                                                                 | :       | 6.3.1.2(1)              | )   |
| $\chi = \frac{1}{\varphi + \sqrt{(\varphi^2 - \overline{\lambda}^2)}} \le 1.0$                                                                                                                               |         | Eq (6.49)               |     |
| where:                                                                                                                                                                                                       |         |                         |     |
| $\Phi = 0.5 + \left[1 + \alpha \left(\overline{\lambda} - 0.2\right) + \overline{\lambda}^{2}\right]$                                                                                                        |         |                         |     |
| $\overline{\lambda}$ is the slenderness for flexural buckling                                                                                                                                                |         |                         |     |
| $\overline{\lambda} = \sqrt{\frac{Af_y}{N_{cr}}} = \left(\frac{L_{cr}}{i}\right) \left(\frac{1}{\lambda_1}\right)$ (For Class 1, 2 and 3 cross-section                                                       | s)      | 6.3.1.3(1)<br>Eq (6.50) |     |
| $\lambda_1 = 93.9 \varepsilon = 93.9 \times 0.83 = 77.94$                                                                                                                                                    |         |                         |     |
| Slenderness for buckling about the minor axis (z-z)                                                                                                                                                          |         |                         |     |
| $\overline{\lambda}_{z} = \left(\frac{L_{cr}}{i_{z}}\right) \left(\frac{1}{\lambda_{1}}\right) = \left(\frac{6000}{94.3}\right) \left(\frac{1}{77.94}\right) = 0.82$                                         |         | Eq (6.50)               |     |
| As, $\overline{\lambda}_z > 0.2$ and $\frac{N_{\rm Ed}}{N_{\rm c,Rd}} > 0.04$ , the flexural buckling effects need                                                                                           |         | 6.3.1.2(4)              | )   |
| to be considered.                                                                                                                                                                                            |         |                         |     |
| The appropriate buckling curve depends on $h/b$ :                                                                                                                                                            |         | Table 6.2               |     |
| $\frac{h}{b} = \frac{355.6}{368.6} = 0.96 < 1.2 \text{ and } t_{\rm f} = 17.5 \text{ mm} < 100 \text{ mm}$                                                                                                   |         |                         |     |
| Therefore the buckling curve to consider for the $z$ - $z$ axis is ' $c$ '                                                                                                                                   |         |                         |     |
| For buckling curve 'c' the imperfection factor is $\alpha = 0.49$                                                                                                                                            |         | Table 6.1               |     |
| Then: $($                                                                                                                                                                                                    |         |                         |     |
| $ \Phi = 0.5 \left( 1 + \alpha \left( \overline{\lambda}_{z} - 0.2 \right) + \overline{\lambda}_{z}^{2} \right) \\ = 0.5 \times \left( 1 + 0.49 \times \left( 0.82 - 0.2 \right) + 0.82^{2} \right) = 0.99 $ |         | 6.3.1.2(1)              | )   |
| $\chi = \frac{1}{\Phi + \sqrt{(\Phi^2 - \overline{\lambda}_z^2)}} = \frac{1}{0.99 + \sqrt{(0.99^2 - 0.82^2)}} = 0.65$                                                                                        |         | Eq (6.49)               |     |

| Example 9 - Pinned column using a Class3 section                                                                                                                                                                 | Sheet 5  | of 7                  | Rev |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|-----|
| 0.65 < 1.0                                                                                                                                                                                                       |          |                       | 1   |
| Therefore,                                                                                                                                                                                                       |          |                       |     |
| $\chi = 0.65$                                                                                                                                                                                                    |          |                       |     |
| The design resistance to flexural buckling is:                                                                                                                                                                   |          |                       |     |
| $N_{b,Rd} = \frac{\chi_z A f_y}{\gamma_{M1}} = \frac{0.65 \times 164 \times 10^2 \times 345}{1.0} \times 10^{-3} = 3678 \text{ kN}$                                                                              |          | Eq (6.47)             |     |
| $\frac{N_{\rm Ed}}{N_{\rm b,Rd}} = \frac{3500}{3678} = 0.95 < 1.0$                                                                                                                                               |          |                       |     |
| Therefore the flexural buckling resistance of the section is adequate.                                                                                                                                           |          |                       |     |
| 9.7.3 Torsional and torsional-flexural buckling resistance                                                                                                                                                       | s        |                       |     |
| For open sections the possibility that the torsional or torsional-flexural resistance may be less than the flexural buckling resistance should be considered.                                                    | buckling | 6.3.1.4(1)            | )   |
| Doubly symmetrical sections do not suffer from torsional-flexural buck<br>Therefore, here only the resistance of the UKC section to torsional buc<br>needs to be considered, as the section is doubly symmetric. |          |                       |     |
| Thus, verify:                                                                                                                                                                                                    |          |                       |     |
| $\frac{N_{\rm Ed}}{N_{\rm b,T,Rd}} \le 1.0$                                                                                                                                                                      |          |                       |     |
| where:                                                                                                                                                                                                           |          |                       |     |
| $N_{\rm b,T,Rd}$ is the design resistance to torsional buckling                                                                                                                                                  |          |                       |     |
| $N_{\rm b,T,Rd} = \frac{\chi_{\rm T} A f_{\rm y}}{\gamma_{\rm M1}}$ (For Class 1, 2 and 3 cross sections)                                                                                                        |          | Based on<br>Eq (6.47) |     |
| $\chi_{\mathrm{T}} = \frac{1}{\varphi_{\mathrm{T}} + \sqrt{(\varphi_{\mathrm{T}}^2 - \overline{\lambda}_{\mathrm{T}}^2)}} \le 1.0$                                                                               |          | Based on<br>Eq (6.49) |     |
| where:                                                                                                                                                                                                           |          |                       |     |
| $\Phi_{\rm T} = 0.5 + \left(1 + \alpha \left(\overline{\lambda}_{\rm T} - 0.2\right) + \overline{\lambda}_{\rm T}^2\right)$                                                                                      |          |                       |     |
| $\overline{\lambda}_{T}$ is the slenderness for Torsional buckling                                                                                                                                               |          |                       |     |
| $\overline{\lambda}_{\mathrm{T}} = \sqrt{\frac{Af_{\mathrm{y}}}{N_{\mathrm{cr},\mathrm{T}}}}$                                                                                                                    |          | 6.3.1.4(2)<br>Eq 6.52 | )   |
| $N_{\rm cr,T}$ is the elastic torsional buckling force                                                                                                                                                           |          |                       |     |
| $N_{\rm cr,T} = \left(\frac{1}{i_o^2}\right) \left(GI_{\rm T} + \frac{\pi^2 EI_{\rm w}}{L^2}\right)$                                                                                                             |          | P363<br>Page A-1:     | 5   |
| $i_{\rm o} = \sqrt{i_{\rm y}^2 + i_{\rm z}^2 + y_0^2}$                                                                                                                                                           |          |                       |     |
| $y_0$ is the distance from the shear centre to the centroid of the gross section along the y-y axis.                                                                                                             | cross    |                       |     |
|                                                                                                                                                                                                                  | cross    |                       |     |

| Example 9 - Pinned column using a Class3 section                                                                                                          | Sheet 6 | of 7                    | Rev |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------|-----|
|                                                                                                                                                           |         |                         |     |
| For doubly symmetric sections:                                                                                                                            |         |                         |     |
| $y_0 = 0$                                                                                                                                                 |         |                         |     |
| Therefore,                                                                                                                                                |         |                         |     |
| $i_0 = \sqrt{i_y^2 + i_z^2 + y_0^2} = \sqrt{156^2 + 94.3^2 + 0} = 182.29 \text{ mm}$                                                                      |         |                         |     |
| $l_0 = \sqrt{l_y + l_z + y_0} = \sqrt{150 + 94.3} + 0 = 182.29 \text{ mm}$                                                                                |         |                         |     |
| $N_{\rm cr,T} = \left(\frac{1}{i_{\rm o}^2}\right) \left(GI_{\rm T} + \frac{\pi^2 EI_{\rm w}}{L^2}\right)$                                                |         |                         |     |
| $= \left(\frac{1}{182.29^{2}}\right) \left((81000 \times 153 \times 10^{4}) + \frac{\pi^{2} \times 210000 \times 4.18 \times 10^{12}}{6000^{2}}\right)$   | -)      |                         |     |
| $= 11 \times 10^6 \text{ N}$                                                                                                                              |         |                         |     |
| $\overline{\lambda}_{\rm T} = \sqrt{\frac{Af_{\rm y}}{N_{\rm cr,T}}} = \sqrt{\frac{164 \times 10^2 \times 345}{11 \times 10^6}} = 0.72$                   |         | 6.3.1.4(2)<br>Eq (6.52) |     |
| For torsional buckling, the buckling curve to be used may be obtained for Table 6.3 of BS EN 1993-1-1 considering the $z$ - $z$ axis.                     | from    | 6.3.1.4(3)              | )   |
| The appropriate buckling curve depends on $h/b$ :                                                                                                         |         |                         |     |
| $\frac{h}{b} = \frac{355.6}{368.6} = 0.96 < 1.2, t_{\rm f} = 17.5 \text{ mm} < 100 \text{ mm}$ and S355 steel                                             |         |                         |     |
| Therefore, the buckling curve to consider for the $z$ - $z$ axis is ' $c$ '                                                                               |         | Table 6.2               |     |
| For buckling curve 'c' the imperfection factor is $\alpha = 0.49$                                                                                         |         | Table 6.1               |     |
| Then:                                                                                                                                                     |         |                         |     |
| $\Phi_{\rm T} = 0.5 \left[ 1 + \alpha \left( \overline{\lambda}_{\rm T} - 0.2 \right) + \overline{\lambda}_{\rm T}^2 \right]$                             |         | 6.3.1.2(1)              | )   |
| $= 0.5 \times \left[ 1 + 0.49 \times (0.72 - 0.2) + 0.72^{2} \right] = 0.89$                                                                              |         |                         |     |
| $\chi_{\rm T} = \frac{1}{\varphi_{\rm T} + \sqrt{(\varphi_{\rm T}^2 - \overline{\lambda}_{\rm T}^2)}} = \frac{1}{0.89 + \sqrt{(0.89^2 - 0.72^2)}} = 0.71$ |         | Eq (6.49)               |     |
| 0.71 < 1.0                                                                                                                                                |         |                         |     |
| Therefore,                                                                                                                                                |         |                         |     |
| $\chi_{\rm T}=0.71$                                                                                                                                       |         |                         |     |
| The design resistance to torsional buckling is:                                                                                                           |         |                         |     |
| $N_{\rm b,T,Rd} = \frac{\chi_{\rm T} A f_{\rm y}}{\gamma_{\rm M1}} = \frac{0.71 \times 164 \times 10^2 \times 345}{1.0} \times 10^{-3} = 4017 \text{ kN}$ |         | Based on<br>Eq (6.47)   |     |
| $\frac{N_{\rm Ed}}{N_{\rm b,T,Rd}} = \frac{3500}{4017} = 0.87 < 1.0$                                                                                      |         |                         |     |
| Therefore the torsional buckling resistance is adequate.                                                                                                  |         |                         |     |
|                                                                                                                                                           |         |                         |     |


| Example 9 - Pinned column using a Class3 section                                                                                                                | Sheet 7 | of 7      | Rev                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|--------------------------|
| 9.8 Blue Book Approach                                                                                                                                          |         |           | erences in<br>0.8 are to |
| The design resistances may be obtained from SCI publication P363.                                                                                               |         | P363 uni  | less                     |
| Consider a $356 \times 368 \times 129$ UKC in S355 steel                                                                                                        |         | otherwise | e sialea.                |
| 9.8.1 Design value of force for Ultimate Limit State                                                                                                            |         |           |                          |
| Design compression force $N_{\rm Ed} = 3500 \text{ kN}$                                                                                                         |         |           |                          |
| 9.8.2 Cross-section classification                                                                                                                              |         |           |                          |
| Under compression the cross section is at least Class 3.                                                                                                        |         | 6.2(a) &  | Pg D-11                  |
| 9.8.3 Cross sectional resistance                                                                                                                                |         |           |                          |
| Compression resistance                                                                                                                                          |         |           |                          |
| $N_{\rm c,Rd} = N_{\rm pl,Rd} = 5660 \text{ kN}$                                                                                                                |         | Page D-1  | 161                      |
| $\frac{N_{\rm Ed}}{N_{\rm c,Rd}} = \frac{3500}{5660} = 0.62 < 1.0$                                                                                              |         |           |                          |
| Therefore the compression resistance is adequate                                                                                                                |         |           |                          |
| <b>9.8.4 Member buckling resistance</b><br>As the column is pin ended with no intermediate restraints, the buckling about both axes $(L_{cr})$ may be taken as: | length  |           |                          |
| $L_{\rm cr} = L = 6.0 \text{ m}$                                                                                                                                |         |           |                          |
| For a buckling length of 6.0 m, the flexural buckling resistances are:                                                                                          |         | Page D-1  | 11                       |
| $N_{\rm b,y,Rd}$ = 5010 kN (about the major axis)                                                                                                               |         |           |                          |
| $N_{\rm b,z,Rd}$ = 3670 kN (about the minor axis)                                                                                                               |         |           |                          |
| For a buckling length of 6.0 m, the torsional buckling resistance is:                                                                                           |         |           |                          |
| $N_{\rm b,T,Rd}$ = 4040 kN                                                                                                                                      |         |           |                          |
| The critical buckling verification is:                                                                                                                          |         |           |                          |
| $\frac{N_{\rm Ed}}{N_{\rm b,z,Rd}} = \frac{3500}{3670} = 0.95 < 1.0$                                                                                            |         |           |                          |
| Therefore the buckling resistance is adequate                                                                                                                   |         |           |                          |
|                                                                                                                                                                 |         |           |                          |
|                                                                                                                                                                 |         |           |                          |
|                                                                                                                                                                 |         |           |                          |
|                                                                                                                                                                 |         |           |                          |
|                                                                                                                                                                 |         |           |                          |
|                                                                                                                                                                 |         |           |                          |
|                                                                                                                                                                 |         |           |                          |
|                                                                                                                                                                 |         |           |                          |

|                                                                 | Job No.   | CDS164                |                                                         | Sheet 1 | of 8                        | Rev      |  |
|-----------------------------------------------------------------|-----------|-----------------------|---------------------------------------------------------|---------|-----------------------------|----------|--|
|                                                                 | Job Title | Worked exar           | Worked examples to the Eurocodes with UK NA             |         |                             |          |  |
| Silwood Park, Ascot, Berks SL5 7QN<br>Telephone: (01344) 636525 | Subject   | Example 10 restraints | Example 10 - Pinned column with intermediate restraints |         |                             |          |  |
| Fax: (01344) 636570                                             | Client    | SCI                   | Made by                                                 | MEB     | Date                        | Feb 2009 |  |
| CALCULATION SHEET                                               |           | 501                   | Checked by                                              | DGB     | Date                        | Jul 2009 |  |
| 10 Pinned column with intermediate                              |           |                       |                                                         | 1 *     | ences are to<br>V 1993-1-1: |          |  |

## Pinned column with intermediate IU restraints

## 10.1 Scope

The column shown in Figure 10.1 has a tie at mid-height providing restraint about the z-z axis. Design the column in S275 steel.





The design aspects covered in this example are:

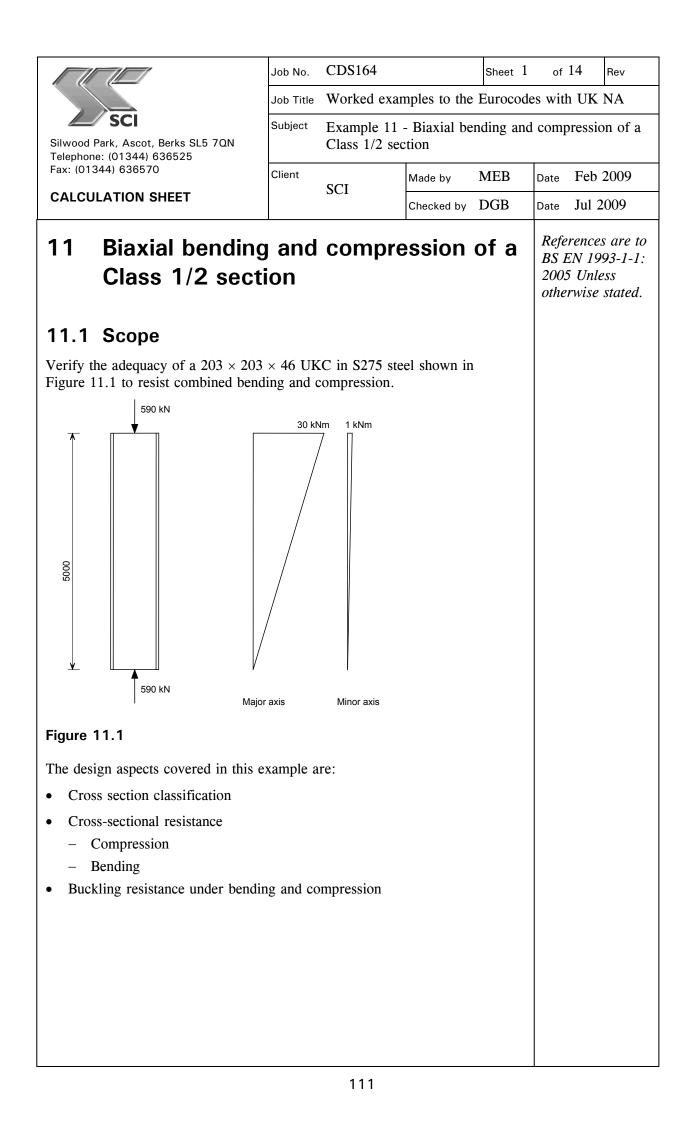
- Cross section classification •
- Cross-sectional resistance .
  - Compression \_
- Buckling resistance •
  - Flexural \_
  - Torsional
  - Torsional-flexural \_

2005, including its National Annex, unless otherwise

stated.

| Example 10 - Pinned column with intern                                                                                                                                                                                                                                   | nediate restraints                                                                                                                                                                                                                                             | Sheet 2 | of 8                          | Rev    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------|--------|
| <b>10.2 Design value of forc</b><br>Design compression force $N_{\rm Ed} = 2850$                                                                                                                                                                                         |                                                                                                                                                                                                                                                                | State   |                               | L      |
| 10.3 Section properties                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                |         |                               |        |
| $305 \times 305 \times 97$ UKC in S275 steel                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                |         |                               |        |
| From section property tables:                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                |         |                               |        |
| Depth<br>Width<br>Web thickness<br>Flange thickness<br>Root radius<br>Depth between fillets<br>Radius of gyration y axis<br>Radius of gyration z axis<br>Torsional constant<br>Warping constant<br>Area                                                                  | h = 307.9  mm<br>b = 305.3  mm<br>$t_w = 9.9 \text{ mm}$<br>$t_f = 15.4 \text{ mm}$<br>r = 15.2  mm<br>d = 246.7  mm<br>$i_y = 13.4 \text{ cm}$<br>$i_z = 7.69 \text{ cm}$<br>$I_T = 91.2 \text{ cm}^4$<br>$I_w = 1.56 \text{ dm}^6$<br>$A = 123 \text{ cm}^2$ |         | P363                          |        |
| Modulus of elasticity<br>Shear modulus                                                                                                                                                                                                                                   | $E = 210 \ 000 \ \text{N/mm}^2$ $G \approx 81 \ 000 \ \text{N/mm}^2$                                                                                                                                                                                           |         | 3.2.6(1)                      |        |
| For buildings that will be built in the U<br>strength ( $f_y$ ) and the ultimate strength ( $f_d$ )<br>obtained from the product standard. W<br>nominal value should be used.<br>For S275 steel and $t < 16$ mm<br>Yield strength $f_y = R_{eH} = 275$ N/mm <sup>2</sup> | ) for structural steel should b<br>here a range is given, the low                                                                                                                                                                                              | e those | NA.2.4<br>BS EN 10<br>Table 7 | 0025-2 |
| 10.4 Cross section classi                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                |         | Table 5.2                     |        |
| $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                |         |                               |        |
| Outstand of compression flange                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                |         |                               |        |
| $c = \frac{b - t_{w} - 2r}{2} = \frac{305.9 - 9.9 - 7}{2}$ $\frac{c}{t_{f}} = \frac{132.8}{15.4} = 8.6$                                                                                                                                                                  | $(2 \times 15.2)$ = 132.8 mm                                                                                                                                                                                                                                   |         |                               |        |
| The limiting value for Class 1 is $\frac{c}{t_{\rm f}} \le 9$                                                                                                                                                                                                            | $\Theta \varepsilon = 9 \times 0.92 = 8.3$                                                                                                                                                                                                                     |         |                               |        |
| The limiting value for Class 2 is $\frac{c}{t_{\rm f}} \le 1$                                                                                                                                                                                                            | $0\varepsilon = 10 \times 0.92 = 9.2$                                                                                                                                                                                                                          |         |                               |        |
| 98.3 < 8.6 < 9.2                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                |         |                               |        |
| Therefore the flange is Class 2.                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                |         |                               |        |
|                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                |         |                               |        |

| Example 10 - Pinned column with intermediate restraints Sheet 3                                                                                                                                                                                                                                                                       | of 8       | Rev       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| Web subject to compression                                                                                                                                                                                                                                                                                                            |            |           |
| c = d = 246.7  mm                                                                                                                                                                                                                                                                                                                     |            |           |
| $\frac{c}{t_{\rm w}} = \frac{246.7}{9.9} = 24.9$                                                                                                                                                                                                                                                                                      |            |           |
| t <sub>w</sub> 9.9                                                                                                                                                                                                                                                                                                                    |            |           |
| The limiting value for Class 1 is $\frac{c}{t_w} \le 33\varepsilon = 33 \times 0.92 = 30.4$                                                                                                                                                                                                                                           |            |           |
| 24.9 < 30.4                                                                                                                                                                                                                                                                                                                           |            |           |
| Therefore the web is Class 1 under compression.                                                                                                                                                                                                                                                                                       |            |           |
| Therefore the cross section is Class 2 under compression.                                                                                                                                                                                                                                                                             |            |           |
| 10.5 Partial factors for resistance                                                                                                                                                                                                                                                                                                   |            |           |
| $\gamma_{M0} = 1.0$                                                                                                                                                                                                                                                                                                                   | NA.2.15    |           |
| $\gamma_{\rm M1} = 1.0$                                                                                                                                                                                                                                                                                                               |            |           |
| 10.6 Cross-sectional resistance                                                                                                                                                                                                                                                                                                       |            |           |
| 10.6.1 Compression resistance                                                                                                                                                                                                                                                                                                         |            |           |
| Verify that:                                                                                                                                                                                                                                                                                                                          |            |           |
| $\frac{N_{\rm Ed}}{N_{\rm c,Rd}} \le 1.0$                                                                                                                                                                                                                                                                                             | 6.2.4(1)   |           |
| The design resistance of the cross section for compression is:                                                                                                                                                                                                                                                                        |            |           |
| $N_{\rm c,Rd} = \frac{A \times f_y}{M}$ (For Class 1, 2 and 3 cross sections)                                                                                                                                                                                                                                                         |            |           |
| $N_{\rm c,Rd} = \frac{\gamma_{\rm M0}}{\gamma_{\rm M0}}$ (For Class 1, 2 and 5 cross sections)                                                                                                                                                                                                                                        | 6.2.4(2)   | Eq (6.10) |
|                                                                                                                                                                                                                                                                                                                                       |            |           |
| $N_{\rm c,Rd} = \frac{A \times f_y}{\gamma_{\rm M0}} = \frac{12300 \times 275}{1.0} \times 10^{-3} = 3383 \text{ kN}$                                                                                                                                                                                                                 | 6.2.4(2) 1 | Eq (6.10) |
| $\frac{N_{\rm Ed}}{N_{\rm Ed}} = \frac{2850}{2000} = 0.84 < 1.0$                                                                                                                                                                                                                                                                      |            |           |
| $\frac{1}{N_{\rm c,Rd}} = \frac{1}{3383} = 0.84 < 1.0$                                                                                                                                                                                                                                                                                | 6.2.4(1)   | Eq (6.9)  |
| Therefore the compression resistance of the cross section is adequate.                                                                                                                                                                                                                                                                |            |           |
| 10.7 Member buckling resistance                                                                                                                                                                                                                                                                                                       |            |           |
| 10.7.1 Buckling length                                                                                                                                                                                                                                                                                                                |            |           |
| The member is effectively held in position at both ends, but not restrained in direction at either end. The tie provides restraint in position only for buckling about the z-z axis (i.e. the member is not restrained in direction by the tie). Torsional restraint is also provided by the tie. Therefore the buckling lengths are: |            |           |
|                                                                                                                                                                                                                                                                                                                                       |            |           |
|                                                                                                                                                                                                                                                                                                                                       |            |           |


| Example 10 - Pinned column with intermediate restraints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sheet 4 | of 8                    | Rev |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------|-----|
| About the y-y axis $L_{cr,y} = L = 6000 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |     |
| About the z-z axis $L_{cr,z} = \frac{L}{2} = 3000 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                         |     |
| 10.7.2 Flexural buckling resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |     |
| Verify that:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 6.3.1.1(1)<br>Eq (6.46) | ·   |
| $\frac{N_{\rm Ed}}{N_{\rm b,Rd}} \le 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                         |     |
| The design buckling resistance is determined from:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 6.3.1.1(3)              |     |
| $N_{\rm b,Rd} = \frac{\chi A f_{\rm y}}{\gamma_{\rm M1}}$ (For Class 1, 2 and 3 cross sections)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | Eq (6.47)               | •   |
| $\chi$ is the reduction factor for the buckling curve and is determined from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n:      | 6.3.1.2(1)              | )   |
| $\chi = \frac{1}{\Phi + \sqrt{(\Phi^2 - \overline{\lambda}^2)}} \le 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | Eq (6.49)               | )   |
| where:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                         |     |
| $\Phi = 0.5 + \left[1 + \alpha \left(\overline{\lambda} - 0.2\right) + \overline{\lambda}^{2}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                         |     |
| $\overline{\lambda}$ is the slenderness for flexural buckling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                         |     |
| $\overline{\lambda} = \sqrt{\frac{Af_y}{N_{cr}}} = \left(\frac{L_{cr}}{i}\right) \left(\frac{1}{\lambda_1}\right)$ (For Class 1, 2 and 3 cross section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns)     | 6.3.1.3(1)<br>Eq (6.50) | ,   |
| $\lambda_1 = 93.9\varepsilon = 93.9 \times 0.92 = 86.39$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                         |     |
| Slenderness for buckling about the minor axis (z-z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |     |
| $\overline{\lambda}_{z} = \left(\frac{L_{cr,z}}{i_{z}}\right)\left(\frac{1}{\lambda_{1}}\right) = \left(\frac{3000}{76.9}\right)\left(\frac{1}{86.39}\right) = 0.45$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | Eq (6.50)               | )   |
| Slenderness for buckling about the major axis (y-y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |     |
| $\overline{\lambda}_{y} = \left(\frac{L_{cr,y}}{i_{y}}\right)\left(\frac{1}{\lambda_{1}}\right) = \left(\frac{6000}{134}\right)\left(\frac{1}{86.39}\right) = 0.52$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Eq (6.50)               | )   |
| As both $\overline{\lambda}_z$ and $\overline{\lambda}_y$ are greater than 0.2 and $\frac{N_{\rm Ed}}{N_{\rm c, Rd}} > 0.04$ the effective of the second sec | ts of   | 6.3.1.2(4               | )   |
| flexural buckling need to be considered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                         |     |
| The appropriate buckling curve depends on $h/b$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | Table 6.2               |     |
| $\frac{h}{b} = \frac{307.9}{305.3} = 1.01 < 1.2, t_{\rm f} = 15.4 \text{ mm} < 100 \text{ mm} \text{ and } \text{S275 steel}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | Table 6.2               |     |
| Therefore:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                         |     |
| The buckling curve to consider for the <i>z</i> - <i>z</i> axis is ' <i>c</i> '<br>The buckling curve to consider for the <i>y</i> - <i>y</i> axis is ' <i>b</i> '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                         |     |
| The sucking curve to consider for the y-y axis is b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                         |     |

| Example 10 - Pinned column with intermediate restraints                                                                                                                                                           | Sheet 5 | of 8          | Rev |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|-----|
| For buckling curve 'c' the imperfection factor for the z-z axis is:<br>$\alpha_z = 0.49$                                                                                                                          |         | Table 6.1     |     |
| For buckling curve 'b' the imperfection factor for the y-y axis is:<br>$\alpha_y = 0.34$                                                                                                                          |         |               |     |
| Minor axis (z-z)                                                                                                                                                                                                  |         |               |     |
| $\Phi_{z} = 0.5 \left[ 1 + \alpha_{z} \left( \overline{\lambda}_{z} - 0.5 \right) + \overline{\lambda}_{z}^{2} \right]$                                                                                           |         | 6.3.1.2(1)    | )   |
| $= 0.5 \times \left[ 1 + 0.49 \times (0.45 - 0.2) + 0.45^{2} \right] = 0.66$                                                                                                                                      |         |               |     |
| $\chi_{z} = \frac{1}{(\Phi_{z} + \sqrt{(\Phi_{z}^{2} - \overline{\lambda}_{z}^{2})})} = \frac{1}{0.66 + \sqrt{(0.66^{2} - 0.45^{2})}} = 0.88$                                                                     |         | Eq (6.49)     |     |
| 0.88 < 1.0                                                                                                                                                                                                        |         |               |     |
| Therefore,                                                                                                                                                                                                        |         |               |     |
| $\chi_z = 0.88$                                                                                                                                                                                                   |         |               |     |
| Major axis (y-y)                                                                                                                                                                                                  |         |               |     |
| $\Phi_{y} = 0.5 \left[ 1 + \alpha_{y} \left( \overline{\lambda}_{y} - 0.2 \right) + \overline{\lambda}_{y}^{2} \right]$                                                                                           |         | 6.3.1.2(1)    | )   |
| $= 0.5 \times \left[ 1 + 0.34 \times (0.52 - 0.2) + 0.52^{2} \right] = 0.69$                                                                                                                                      |         |               |     |
| $\chi_{y} = \frac{1}{(\Phi_{y} + \sqrt{(\Phi_{y}^{2} - \overline{\lambda}_{y}^{2})})} = \frac{1}{0.69 + \sqrt{(0.69^{2} - 0.52^{2})}} = 0.87$                                                                     |         | Eq (6.49)     |     |
| 0.87 < 1.0                                                                                                                                                                                                        |         |               |     |
| Therefore,                                                                                                                                                                                                        |         |               |     |
| $\chi_{\rm y}=0.87$                                                                                                                                                                                               |         |               |     |
| Therefore the more onerous effects are for buckling about the $y$ - $y$ axis. design buckling resistance is:                                                                                                      | The     | Eq (6.47)     |     |
| $N_{b,Rd} = \frac{\chi_y A f_y}{\gamma_{M1}} = \frac{0.87 \times 12300 \times 275}{1.0} \times 10^{-3} = 2943 \text{ kN}$                                                                                         |         | <b>_4</b> (0) |     |
| $\frac{N_{\rm Ed}}{N_{\rm b,Rd}} = \frac{2850}{2943} = 0.97 < 1.0$                                                                                                                                                |         |               |     |
| Therefore the flexural buckling resistance of the section is adequate.                                                                                                                                            |         |               |     |
| 10.7.3 Torsional and torsional-flexural buckling resistance                                                                                                                                                       |         |               |     |
| For open sections, the possibility that the torsional or torsional-flexural buckling resistance may be less than the flexural buckling resistance sho considered.                                                 | ould be | 6.3.1.4(1)    | )   |
| Doubly symmetrical sections do not suffer from torsional-flexural buckl<br>Therefore, here only the resistance of the UKC section to torsional buck<br>needs to be considered as the section is doubly symmetric. | -       |               |     |
|                                                                                                                                                                                                                   |         |               |     |

| Example 10 - Pinned column with intermediate restraints Sheet 6                                                                                         | of 8                  | Rev   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|
| Thus, verify:                                                                                                                                           |                       |       |
| $\frac{N_{\rm Ed}}{N_{\rm b,T,Rd}} \le 1.0$                                                                                                             |                       |       |
| where:                                                                                                                                                  |                       |       |
| $N_{\rm b,T,Rd}$ is the design resistance to torsional buckling                                                                                         |                       |       |
| $N_{\rm b,T,Rd} = \frac{\chi_{\rm T} A f_{\rm y}}{\gamma_{\rm M1}}$ (For Class 1, 2 and 3 cross sections)                                               | Based on<br>Eq (6.47) | )     |
| $\chi_{\mathrm{T}} = \frac{1}{\varphi_{\mathrm{T}} + \sqrt{(\varphi_{\mathrm{T}}^{2} - \overline{\lambda}_{\mathrm{T}}^{2})}} \leq 1.0$                 | Based on<br>Eq (6.49) | )     |
| where:                                                                                                                                                  |                       |       |
| $\Phi_{\rm T} = 0.5 + \left(1 + \alpha \left(\overline{\lambda}_{\rm T} - 0.2\right) + \overline{\lambda}_{\rm T}^2\right)$                             |                       |       |
| $\overline{\lambda}_{T}$ is the slenderness for Torsional buckling                                                                                      |                       |       |
| $\overline{\lambda}_{\mathrm{T}} = \sqrt{rac{Af_{\mathrm{y}}}{N_{\mathrm{cr,T}}}}$                                                                     | 6.3.1.4(2)<br>Eq 6.52 | )     |
| $N_{\rm cr,T}$ is the elastic torsional buckling force                                                                                                  |                       |       |
| $N_{\rm cr,T} = \left(\frac{1}{i_o^2}\right) \left(GI_{\rm T} + \frac{\pi^2 EI_{\rm w}}{L^2}\right)$                                                    | P363, 6.1             | l(ii) |
| $i_{\rm o} = \sqrt{i_{\rm y} + i_{\rm z} + y_0}$                                                                                                        |                       |       |
| $y_0$ is the distance from the shear centre to the centroid of the gross cross section along the y-y axis.                                              |                       |       |
| For doubly symmetric sections:                                                                                                                          |                       |       |
| $y_0 = 0$                                                                                                                                               |                       |       |
| Therefore,                                                                                                                                              |                       |       |
| $i_{o} = \sqrt{i_{y} + i_{z} + y_{0}} = \sqrt{134^{2} + 76.9^{2} + 0} = 154.50 \text{ mm}^{2}$                                                          |                       |       |
| $N_{\rm cr,T} = \left(\frac{1}{i_o^2}\right) \left(GI_{\rm T} + \frac{\pi^2 EI_{\rm w}}{L^2}\right)$                                                    |                       |       |
| $= \left(\frac{1}{154.5^{2}}\right) \left((81000 \times 91.2 \times 10^{4}) + \frac{\pi^{2} \times 210000 \times 1.56 \times 10^{12}}{3000^{2}}\right)$ |                       |       |
| $=18.1 \times 10^3$ N                                                                                                                                   |                       |       |
| $\overline{\lambda}_{\rm T} = \sqrt{\frac{Af_{\rm y}}{N_{\rm cr,T}}} = \sqrt{\frac{123 \times 10^2 \times 275}{18.1 \times 10^3}} = 0.43$               | 6.3.1.4(2<br>Eq 6.52  | )     |
|                                                                                                                                                         |                       |       |
|                                                                                                                                                         |                       |       |

| Example 10 - Pinned column with intermediate restraints                                                                                                        | Sheet 7 | of 8               | Rev                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|----------------------------------|
| For torsional buckling, the buckling curve to be used may be obtained Table 6.3 of BS EN 1993-1-1 considering the $z$ - $z$ axis.                              | from    | 6.3.1.4(           | 3)                               |
| The appropriate buckling curve depends on $h/b$ :                                                                                                              |         |                    |                                  |
| $\frac{h}{b} = \frac{307.6}{305.3} = 1.01 < 1.2, t_{\rm f} = 17.5 \text{ mm} < 100 \text{ mm}$ and S275 steel                                                  |         |                    |                                  |
| For S275, the buckling curve to consider for the $z$ - $z$ axis is ' $c$ '                                                                                     |         | Table 6            | .2                               |
| For buckling curve 'c' the imperfection factor is                                                                                                              |         | Table 6            | .1                               |
| $\alpha_{\rm z} = 0.49$                                                                                                                                        |         |                    |                                  |
| $\boldsymbol{\varPhi}_{\mathrm{T}} = 0.5 \left[ 1 + \alpha \left( \overline{\lambda}_{\mathrm{T}} - 0.2 \right) + \overline{\lambda}_{\mathrm{T}}^{2} \right]$ |         | 6.3.1.2(           | 1)                               |
| $= 0.5 \times \left[ 1 + 0.49 \times (0.43 - 0.2) + 0.43^{2} \right] = 0.65$                                                                                   |         |                    |                                  |
| $\chi_{\rm T} = \frac{1}{\Phi_{\rm T} + \sqrt{(\Phi_{\rm T}^2 - \overline{\lambda}_{\rm T}^2)}} = \frac{1}{0.65 + \sqrt{(0.65^2 - 0.43^2)}} = 0.88$            |         | Eq (6.4            | 9)                               |
| 0.88 < 1.0                                                                                                                                                     |         |                    |                                  |
| Therefore,                                                                                                                                                     |         |                    |                                  |
| $\chi_{\rm T} = 0.88$                                                                                                                                          |         |                    |                                  |
| The design resistance torsional buckling is:                                                                                                                   |         |                    |                                  |
| $N_{\rm b,T,Rd} = \frac{\chi_{\rm T} A f_{\rm y}}{\gamma_{\rm M1}} = \frac{0.88 \times 123 \times 10^2 \times 275}{1.0} \times 10^{-3} = 2977 \text{ kN}$      |         | Based o<br>Eq (6.4 |                                  |
| $\frac{N_{\rm Ed}}{N_{\rm b,T,Rd}} = \frac{2850}{2977} = 0.96 < 1.0$                                                                                           |         |                    |                                  |
| Therefore the torsional buckling resistance is adequate.                                                                                                       |         |                    |                                  |
| 10.8 Blue Book Approach                                                                                                                                        |         |                    |                                  |
| The design resistances may be obtained from SCI publication P363.                                                                                              |         |                    | ferences in                      |
| Consider $305 \times 305 \times 97$ UKC in S275 steel                                                                                                          |         | to P363            | 10.8 are<br>unless<br>se stated. |
| 10.8.1 Design value of force for Ultimate Limit State                                                                                                          |         |                    |                                  |
| Design compression force $N_{\rm Ed} = 2850 \text{ kN}$                                                                                                        |         |                    |                                  |
| 10.8.2 Cross section classification                                                                                                                            |         |                    |                                  |
| Under compression the cross section is at least Class 3.                                                                                                       |         | 6.2(a) &           | k Pg C-12                        |
|                                                                                                                                                                |         |                    |                                  |
|                                                                                                                                                                |         |                    |                                  |
|                                                                                                                                                                |         |                    |                                  |
|                                                                                                                                                                |         |                    |                                  |
|                                                                                                                                                                |         |                    |                                  |

| Example 10 - Pinned column with intermediate restraints                                                                                    | Sheet 8 | of 8     | Rev |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|-----|
| 10.8.3 Cross-sectional resistance                                                                                                          |         |          |     |
| Compression resistance<br>$N_{\rm c,Rd} = 3380 \text{ kN}$                                                                                 |         | Page C-1 | 62  |
| $\frac{N_{\rm Ed}}{N_{\rm c,Rd}} = \frac{2850}{3380} = 0.84 < 1.0$                                                                         |         |          |     |
| Therefore the compression resistance is adequate.                                                                                          |         |          |     |
| <b>10.8.4 Member buckling resistance</b><br>The buckling lengths may be taken as:<br>About the major $(y-y)$ axis $L_{cr,y} = 6.0$ m       |         |          |     |
| About the minor (z-z) axis $L_{cr,z} = 3.0 \text{ m}$                                                                                      |         |          |     |
| The flexural buckling resistances are:<br>For buckling about the minor axis with a buckling length of 3.0 m,<br>$N_{\rm b,z,Rd}$ = 2950 kN |         | Page C-1 | 2   |
| For buckling about the major axis with a buckling length of 6.0 m,<br>$N_{\rm b,y,Rd} = 2970 \text{ kN}$                                   |         |          |     |
| For a buckling length of 3.0 m, the torsional buckling resistance is:<br>$N_{\rm b,T,Rd} = 2980 \text{ kN}$                                |         |          |     |
| The critical buckling verification is                                                                                                      |         |          |     |
| $\frac{N_{\rm Ed}}{N_{\rm b,z,Rd}} = \frac{2850}{2950} = 0.97 < 1.0$                                                                       |         |          |     |
| Therefore the buckling resistance is adequate                                                                                              |         |          |     |
|                                                                                                                                            |         |          |     |
|                                                                                                                                            |         |          |     |
|                                                                                                                                            |         |          |     |
|                                                                                                                                            |         |          |     |
|                                                                                                                                            |         |          |     |
|                                                                                                                                            |         |          |     |
|                                                                                                                                            |         |          |     |
|                                                                                                                                            |         |          |     |
|                                                                                                                                            |         |          |     |
|                                                                                                                                            |         |          |     |



| Example 11 - Biaxial bending and compression                                                                                                                                                                              | s of a Class 1/2 section Sheet 2                                                                                                                                                                                                                                                            | of 14 Rev                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 11.2 Design bending moment force                                                                                                                                                                                          | s and compression                                                                                                                                                                                                                                                                           |                          |
| Design bending moment about the $y$ - $y$ axis<br>Design bending moment about the $z$ - $z$ axis<br>Design compression force                                                                                              | $M_{y,Ed} = 30 \text{ kNm}$<br>$M_{z,Ed} = 1 \text{ kNm}$<br>$N_{Ed} = 590 \text{ kN}$                                                                                                                                                                                                      |                          |
| 11.3 Section properties                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                             |                          |
| $203 \times 203 \times 46$ UKC in S275 steel                                                                                                                                                                              |                                                                                                                                                                                                                                                                                             |                          |
| From section property tables:                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                             | P363                     |
| Depth<br>Width<br>Web thickness<br>Flange thickness<br>Root radius<br>Depth between fillets<br>Radius of gyration y-y axis<br>Radius of gyration z-z axis<br>Plastic modulus y-y axis<br>Plastic modulus z-z axis<br>Area | $h = 203.2 \text{ mm}$ $b = 203.6 \text{ mm}$ $t_w = 7.2 \text{ mm}$ $t_f = 11.0 \text{ mm}$ $r = 10.2 \text{ mm}$ $d = 160.8 \text{ mm}$ $i_y = 8.82 \text{ cm}$ $i_z = 5.13 \text{ cm}$ $W_{\text{pl},y} = 497 \text{ cm}^3$ $W_{\text{pl},z} = 231 \text{ cm}^3$ $A = 58.7 \text{ cm}^2$ |                          |
| Modulus of elasticity                                                                                                                                                                                                     | $E = 210\ 000\ \text{N/mm}^2$                                                                                                                                                                                                                                                               | 3.2.6(1)                 |
| For buildings that will be built in the UK, the strength $(f_y)$ and the ultimate strength $(f_u)$ for s obtained from the product standard. Where a nominal value should be used.                                        | tructural steel should be those                                                                                                                                                                                                                                                             | NA.2.4                   |
| For S275 steel and $t \le 16 \text{ mm}$<br>Yield strength $f_y = R_{eH} = 275 \text{ N/mm}^2$                                                                                                                            |                                                                                                                                                                                                                                                                                             | BS EN 10025-2<br>Table 7 |
| 11.4 Cross section classificat                                                                                                                                                                                            | ion                                                                                                                                                                                                                                                                                         |                          |
| $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$                                                                                                                                                    |                                                                                                                                                                                                                                                                                             | Table 5.2                |
| Outstand of compression flange                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                             |                          |
| $c = \frac{b - t_{w} - 2r}{2} = \frac{203.6 - 7.2 - (2 \times 10)}{2}$                                                                                                                                                    | (0.2) = 88.0 mm                                                                                                                                                                                                                                                                             |                          |
| $\frac{c}{t_{\rm f}} = \frac{88}{11} = 8$                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |                          |
| The limiting value for Class 1 is $\frac{c}{t_{\rm f}} \le 9\varepsilon = 9$                                                                                                                                              | $9 \times 0.92 = 8.28$                                                                                                                                                                                                                                                                      |                          |
| 8 < 8.28                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                             |                          |
| Therefore the flange is Class 1.                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                             |                          |
|                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                             |                          |

| Example 11 - Biaxial bending and compressions of a Class 1/2 section Sheet 3                                                                                                               | of 14 Rev         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Web subject to bending and compression                                                                                                                                                     |                   |
| c = d = 160.8  mm                                                                                                                                                                          |                   |
| $\frac{c}{t_{\rm w}} = \frac{160.8}{7.2} = 22.33$                                                                                                                                          |                   |
| $\alpha = 0.5 \left[ 1 + \left( \frac{N_{\rm Ed}}{f_{\rm y} t_{\rm w} d} \right) \right] = 0.5 \times \left[ 1 + \left( \frac{590000}{275 \times 7.2 \times 160.8} \right) \right] = 1.43$ |                   |
| but -1 < $\alpha \leq 1$                                                                                                                                                                   |                   |
| Therefore $\alpha = 1.0$                                                                                                                                                                   |                   |
| As $\alpha > 0.5$ , the limiting value for Class 1 is<br>$\frac{c}{t_w} \le \frac{396 \varepsilon}{13 \alpha - 1} = \frac{396 \times 0.92}{(13 \times 1.0) - 1} = 30.36$                   |                   |
| 22.33 < 30.36                                                                                                                                                                              |                   |
| Therefore the web is Class 1 under bending and compression.                                                                                                                                |                   |
| Therefore the cross section is Class 1 under bending and compression.                                                                                                                      |                   |
| <b>11.5</b> Partial factors for resistance $\gamma_{M0} = 1.0$                                                                                                                             | NA.2.15           |
| $\gamma_{M0} = 1.0$<br>$\gamma_{M1} = 1.0$                                                                                                                                                 | 1111.2.15         |
| 11.6 Cross-sectional resistance                                                                                                                                                            |                   |
| 11.6.1 Compression resistance                                                                                                                                                              |                   |
| Verify that:                                                                                                                                                                               |                   |
| $\frac{N_{\rm Ed}}{N_{\rm c,Rd}} \leq 1.0$                                                                                                                                                 | 6.2.4(1)          |
| The design resistance of the cross section for compression is:                                                                                                                             |                   |
| $N_{\rm c,Rd} = \frac{A f_{\rm y}}{\gamma_{\rm M0}}$ (For Class 1, 2 and 3 cross sections)                                                                                                 | 6.2.4(2) Eq (6.1  |
| $N_{\rm c,Rd} = \frac{Af_{\rm y}}{\gamma_{\rm M0}} = \frac{5870 \times 275}{1.0} \times 10^{-3} = 1614.3 \text{ kN}$                                                                       |                   |
| $\frac{N_{\rm Ed}}{N_{\rm c,Rd}} = \frac{590}{1614.3} = 0.37 < 1.0$                                                                                                                        | 6.2.4(1) Eq (6.9) |
| Therefore the compression resistance of the cross section is adequate.                                                                                                                     |                   |
|                                                                                                                                                                                            |                   |
|                                                                                                                                                                                            |                   |
|                                                                                                                                                                                            |                   |
|                                                                                                                                                                                            |                   |

| Example 11 - Biaxial bending and compressions of a Class 1/2 section Sheet 4                                                                                                                                     | of 14 Rev  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 11.6.2 Resistance to bending                                                                                                                                                                                     | I          |
| For members subject to biaxial bending verify that:                                                                                                                                                              |            |
| $\left(\frac{M_{\rm y,Ed}}{M_{\rm N,y,Ed}}\right)^{\alpha} + \left(\frac{M_{\rm z,Ed}}{M_{\rm N,z,Ed}}\right)^{\beta} \le 1.0$                                                                                   | 6.2.9.1(6) |
| For doubly symmetrical Class 1 and 2 I and H sections.                                                                                                                                                           | 6.2.9.1(4) |
| Consider whether an allowance needs to be made for the effect of the axial force on the plastic moment resistance.                                                                                               |            |
| <b>For bending about the </b> <i>y</i> <b>-</b> <i>y</i> <b> axis</b> – both criteria must be satisfied for the effect of the axial compression to be neglected.                                                 |            |
| $N_{\rm Ed} \le 0.25 \times N_{\rm pl,Rd}$ and $N_{\rm Ed} \le \frac{0.5  h_{\rm w} t_{\rm w} f_{\rm y}}{\gamma_{\rm M0}}$                                                                                       |            |
| $0.25N_{p,Rd} = 0.25 \times 1614.3 = 403.6 \text{ kN} < 590 \text{ kN}$                                                                                                                                          |            |
| As this verification fails, the second verification does not need to be carried out.                                                                                                                             |            |
| Therefore the effect of the axial force needs to be allowed for in bending about the $y$ - $y$ axis.                                                                                                             |            |
| For bending about the z-z axis - the effect of the axial force may be neglected when:                                                                                                                            |            |
| $N_{\rm Ed} \leq \frac{h_{\rm w} t_{\rm w} f_{\rm y}}{\gamma_{\rm M0}}$                                                                                                                                          |            |
| $h_{\rm w} = h - 2t_{\rm f} = 203.2 - 2 \times 11.0 = 181.2 {\rm mm}$                                                                                                                                            |            |
| $\frac{h_{\rm w} t_{\rm w} f_{\rm y}}{\gamma_{\rm M0}} = \frac{181 \times 7.2 \times 275}{1.0} \times 10^{-3} = 358.8 \text{ kN}$                                                                                |            |
| $N_{\rm Ed}$ = 590 kN > 358.8 kN                                                                                                                                                                                 |            |
| Therefore the effect of the axial force needs to be allowed for in bending about the $z$ - $z$ axis.                                                                                                             |            |
| The design plastic moment resistance for the major axis (y-y) is:                                                                                                                                                |            |
| $M_{\rm pl,y,Rd} = \frac{W_{\rm pl,y} f_y}{\gamma_{\rm M0}} = \frac{497 \times 10^3 \times 275}{1.0} \times 10^{-6} = 136.7 \text{ kNm}$                                                                         | 6.2.9.1(2) |
| The design plastic moment resistance for the minor axis $(z-z)$ is:                                                                                                                                              |            |
| $M_{\rm pl,z,Rd} = \frac{W_{\rm pl,z} f_{\rm y}}{\gamma_{\rm M0}} = \frac{231 \times 10^3 \times 275}{1.0} \times 10^{-6} = 63.5 \text{ kNm}$                                                                    | 6.2.9.1(2) |
| Design plastic moment resistance reduced due to the effects of the axial force<br>may be found using the following approximations.                                                                               |            |
| $M_{\mathrm{N},\mathrm{y},\mathrm{Rd}} = M_{\mathrm{pl},\mathrm{y},\mathrm{Rd}} \left( \frac{1-n}{1-0.5a} \right) \text{ but } M_{\mathrm{N},\mathrm{y},\mathrm{Rd}} \le M_{\mathrm{pl},\mathrm{y},\mathrm{Rd}}$ | 6.2.9.1(5) |

| Example 11 - Biaxial bending and compressions of a Class 1/2 section Sheet 5                                                                                                                                                                                         | of 14 Rev  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                                                                                                                                                                                                                                                      | of 14 Kev  |
| where:                                                                                                                                                                                                                                                               |            |
| $n = \frac{N_{\rm Ed}}{N_{\rm pl,Rd}} = \frac{590.0}{1614.3} = 0.37$                                                                                                                                                                                                 |            |
| $a = \frac{A - 2bt_{\rm f}}{A}$ but $a \le 0.5$                                                                                                                                                                                                                      |            |
| $a = \frac{5870 - (2 \times 203.6 \times 11.0)}{5870} = 0.24 < 0.5$                                                                                                                                                                                                  |            |
| $M_{\rm N,y,Rd} = M_{\rm pl,y,Rd} \left( \frac{1-n}{1-0.5a} \right) = 136.7 \times \left( \frac{1-0.37}{1-(0.5 \times 0.24)} \right) = 97.9 \text{ kNm}$                                                                                                             |            |
| 97.9 kNm < $M_{\rm pl,y,Rd}$ (136.7 kNm)                                                                                                                                                                                                                             |            |
| Therefore,                                                                                                                                                                                                                                                           |            |
| $M_{\rm N,y,Rd} = 97.9 \text{ kNm}$                                                                                                                                                                                                                                  |            |
| As $n > a$                                                                                                                                                                                                                                                           |            |
| $M_{\text{N,z,Rd}} = M_{\text{pl,z,Rd}} \left[ 1 - \left(\frac{n-a}{1-a}\right)^2 \right] = 63.5 \times \left[ 1 - \left(\frac{0.37 - 0.24}{1-0.24}\right)^2 \right] = 61.6 \text{ kNm}$                                                                             | 6.2.9.1(5) |
| For biaxial bending of I and H sections                                                                                                                                                                                                                              | 6.2.9.1(6) |
| $\alpha = 2$                                                                                                                                                                                                                                                         |            |
| $\beta = 5n$ but $\beta \ge 1.0$                                                                                                                                                                                                                                     |            |
| $\beta = 5 \times 0.37 = 1.85 > 1.0$                                                                                                                                                                                                                                 |            |
| Then:                                                                                                                                                                                                                                                                |            |
| $\left(\frac{30}{97.9}\right)^2 + \left(\frac{1.0}{61.6}\right)^{1.85} = 0.09 < 1.0$                                                                                                                                                                                 | Eq (6.41)  |
| Therefore the resistance to combined bending and axial force is adequate.                                                                                                                                                                                            |            |
| 11.7 Buckling resistance                                                                                                                                                                                                                                             |            |
| 11.7.1 Buckling length                                                                                                                                                                                                                                               |            |
| The buckling lengths may be taken as:                                                                                                                                                                                                                                |            |
| Major axis $L_{y,cr} = L = 5000 \text{ mm}$                                                                                                                                                                                                                          |            |
| Minor axis $L_{z,cr} = L = 5000 \text{ mm}$                                                                                                                                                                                                                          |            |
| 11.7.2 Combined bending and compression                                                                                                                                                                                                                              |            |
| Verify that:                                                                                                                                                                                                                                                         |            |
| $N_{\rm Ed}$ $M_{\rm y.Ed} + \Delta M_{\rm y.Ed}$ $M_{\rm z.Ed} + \Delta M_{\rm z.Ed}$                                                                                                                                                                               |            |
| $\frac{N_{\rm Ed}}{\chi_{\rm y} N_{\rm Rk} / \gamma_{\rm M1}} + k_{\rm yy} \frac{M_{\rm y.Ed} + \Delta M_{\rm y.Ed}}{\chi_{\rm LT} (M_{\rm y.Rk} / \gamma_{\rm M1})} + k_{\rm yz} \frac{M_{\rm z.Ed} + \Delta M_{\rm z.Ed}}{M_{\rm z.Rk} / \gamma_{\rm M1}} \le 1.0$ | Eq (6.61)  |
| And:                                                                                                                                                                                                                                                                 |            |
|                                                                                                                                                                                                                                                                      |            |
|                                                                                                                                                                                                                                                                      |            |

| Example 11 - Biaxial bending and compressions of a Class 1/2 section Sheet                                                                                                                                                                                                            | 6 of 14 Rev             |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
| $\frac{N_{\text{Ed}}}{\chi_{z}N_{\text{Rk}}/\gamma_{\text{M1}}} + k_{zy} \frac{M_{y.\text{Ed}} + \Delta M_{y.\text{Ed}}}{\chi_{\text{LT}} (M_{y.\text{Rk}}/\gamma_{\text{M1}})} + k_{zz} \frac{M_{z.\text{Ed}} + \Delta M_{z.\text{Ed}}}{M_{z.\text{Rk}}/\gamma_{\text{M1}}} \le 1.0$ | Eq (6.62)               |  |
| where:                                                                                                                                                                                                                                                                                |                         |  |
| $\chi_y, \chi_z$ are the reduction factors for flexural buckling about the major a minor axes                                                                                                                                                                                         | and                     |  |
| $\chi_{\rm LT}$ is the reduction factor for lateral-torsional buckling                                                                                                                                                                                                                |                         |  |
| $k_{yy}$ , $k_{yz}$ , $k_{zz}$ and $k_{zy}$ are the interaction factors                                                                                                                                                                                                               |                         |  |
| For Class 1 cross sections:                                                                                                                                                                                                                                                           | Table 6.7               |  |
| $N_{\rm Rk}$ = $Af_{\rm y}$ = 5870 × 275 × 10 <sup>-3</sup> = 1614.3 kN                                                                                                                                                                                                               |                         |  |
| $M_{\rm y,Rk}$ = $W_{\rm pl,y}f_{\rm y}$ = 497 × 10 <sup>3</sup> × 275 × 10 <sup>-6</sup> = 136.7 kNm                                                                                                                                                                                 |                         |  |
| $M_{z,Rk} = W_{pl,z}f_y = 231 \times 10^3 \times 275 \times 10^{-6} = 63.5 \text{ kNm}$                                                                                                                                                                                               |                         |  |
| $\Delta M_{y,Ed} = 0.0 \text{ kNm} (\text{section is not Class 4})$                                                                                                                                                                                                                   |                         |  |
| $\Delta M_{z,Ed} = 0.0 \text{ kNm}$ (section is not Class 4).                                                                                                                                                                                                                         |                         |  |
| Peduction factor for flowing buckling                                                                                                                                                                                                                                                 |                         |  |
| Reduction factor for flexural buckling<br>The reduction factor for flexural buckling is determined from:                                                                                                                                                                              |                         |  |
| 1                                                                                                                                                                                                                                                                                     | Eq (6.49)               |  |
| $\chi = \frac{1}{\left( \Phi + \sqrt{\left( \Phi^2 - \overline{\lambda}^2 \right)} \right)} \le 1.0$                                                                                                                                                                                  | 24 (0.12)               |  |
| where:                                                                                                                                                                                                                                                                                |                         |  |
| $\Phi = 0.5 + \left[1 + \alpha \left(\overline{\lambda} - 0.2\right) + \overline{\lambda}^{2}\right]$                                                                                                                                                                                 |                         |  |
| $\overline{\lambda}$ is the non-dimensional slenderness for flexural buckling                                                                                                                                                                                                         |                         |  |
| $\overline{\lambda} = \sqrt{\frac{Af_y}{N_{cr}}} = \left(\frac{L_{cr}}{i}\right) \left(\frac{1}{\lambda_1}\right)$ (For Class 1, 2 and 3 cross sections)                                                                                                                              | 6.3.1.3(1)<br>Eq (6.50) |  |
| $\lambda_1 = 93.9\epsilon = 93.9 \times 0.92 = 86.39$                                                                                                                                                                                                                                 |                         |  |
| Flexural buckling about the minor axis (z-z)                                                                                                                                                                                                                                          |                         |  |
| $\overline{\lambda}_{z} = \left(\frac{L_{cr}}{i_{z}}\right) \left(\frac{1}{\lambda_{1}}\right) = \left(\frac{5000}{51.3}\right) \times \left(\frac{1}{86.39}\right) = 1.13$                                                                                                           | Eq (6.50)               |  |
| The appropriate buckling curve depends on $h/b$ and steel grade:                                                                                                                                                                                                                      |                         |  |
| $\frac{h}{b} = \frac{203.2}{203.6} = 1.0 < 1.2, t_{\rm f} = 11.0 \text{ mm} < 100 \text{ mm}$                                                                                                                                                                                         | Table 6.2               |  |
| Therefore, for S275, the buckling curve to consider for the z-z axis is 'c'                                                                                                                                                                                                           |                         |  |
| For buckling curve 'c' $\alpha_z = 0.49$                                                                                                                                                                                                                                              | Table 6.1               |  |
| $\Phi_{z} = 0.5 \left[ 1 + \alpha_{z} \left( \overline{\lambda}_{z} - 0.2 \right) + \overline{\lambda}_{z}^{2} \right]$                                                                                                                                                               | 6.3.1.2(1)              |  |
| $= 0.5 \times \left[1 + 0.49 \times (1.13 - 0.2) + 1.13^{2}\right] = 1.37$                                                                                                                                                                                                            |                         |  |
|                                                                                                                                                                                                                                                                                       |                         |  |

| Example 11 - Biaxial bending and compressions of a Class 1/2 section Sheet 7                                                                                                                    | 7 of 14 Rev             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| $\chi_z = \frac{1}{(\Phi_z + \sqrt{(\Phi_z^2 - \overline{\lambda}_z^2)})} = \frac{1}{1.37 + \sqrt{(1.37^2 - 1.13^2)}} = 0.47$                                                                   | Eq (6.49)               |
| 0.47 < 1.0                                                                                                                                                                                      |                         |
| Therefore,                                                                                                                                                                                      |                         |
| $\chi_z = 0.47$                                                                                                                                                                                 |                         |
| Buckling about the major axis (y-y)                                                                                                                                                             |                         |
| $\overline{\lambda}_{y} = \left(\frac{L_{cr}}{i_{y}}\right) \left(\frac{1}{\lambda_{1}}\right) = \left(\frac{5000}{88.2}\right) \times \left(\frac{1}{86.39}\right) = 0.66$                     | Eq (6.50)               |
| The appropriate buckling curve depends on $h/b$ :                                                                                                                                               |                         |
| $\frac{h}{b} = \frac{203.2}{203.6} = 1.0 < 1.2, t_{\rm f} = 11.0 \text{ mm} < 100 \text{ mm}$                                                                                                   | Table 6.2               |
| Therefore, for S275, the buckling curve to consider for the $y$ - $y$ axis is ' $b$ '                                                                                                           |                         |
| For buckling curve 'b' $\alpha_y = 0.34$                                                                                                                                                        | Table 6.1               |
| $\Phi_{y} = 0.5 \left[ 1 + \alpha_{y} \left( \overline{\lambda}_{y} - 0.2 \right) + \overline{\lambda}_{y}^{2} \right]$                                                                         | 6.3.1.2(1)              |
| $= 0.5 \times \left[ 1 + 0.34 \times (0.66 - 0.2) + 0.66^2 \right] = 0.80$                                                                                                                      |                         |
| $\chi_{y} = \frac{1}{(\Phi_{y} + \sqrt{(\Phi_{y}^{2} - \overline{\lambda}_{y}^{2})})} = \frac{1}{0.80 + \sqrt{(0.80^{2} - 0.66^{2})}} = 0.80$                                                   | Eq (6.49)               |
| 0.8< 1.0                                                                                                                                                                                        |                         |
| Therefore,                                                                                                                                                                                      |                         |
| $\chi_{\rm y}=0.8$                                                                                                                                                                              |                         |
| Reduction factor for lateral-torsional buckling                                                                                                                                                 |                         |
| As a UKC is being considered, the method given in 6.3.2.3 for determining the reduction factor for lateral-torsional buckling ( $\chi_{LT}$ ) of rolled sections is used.                       |                         |
| $\chi_{\text{LT}} = \frac{1}{\varphi_{\text{LT}} + \sqrt{\varphi_{\text{LT}}^2 - \beta \overline{\lambda}_{\text{LT}}^2}}$ but $\leq 1.0$ and $\leq \frac{1}{\overline{\lambda}_{\text{LT}}^2}$ | 6.3.2.3(1)<br>Eq (6.57) |
| where:                                                                                                                                                                                          |                         |
| $\Phi_{\rm LT} = 0.5 \left( 1 + \alpha_{\rm LT} \left( \overline{\lambda}_{\rm LT} - \overline{\lambda}_{\rm LT,0} \right) + \beta \overline{\lambda}_{\rm LT}^2 \right)$                       |                         |
| $\lambda_{\text{LT},0} = 0.4$ and $\beta = 0.75$                                                                                                                                                | NA.2.17                 |
| The appropriate buckling curve depends on $h/b$ :                                                                                                                                               |                         |
| $\frac{h}{b} = 1.0 < 2$ therefore use curve 'b'                                                                                                                                                 | NA.2.17                 |
| For buckling curve 'b' $\alpha_{LT} = 0.34$                                                                                                                                                     | NA.2.16 &<br>Table 6.3  |
|                                                                                                                                                                                                 |                         |

| Example 11 - Biaxial bending and compressions of a Class 1/2 section Sheet 8                                                                                                                                              | of 14      | Rev    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|
| Zhampte 11 - Diahar benefing and compressions of a Class 1/2 section Sileet o                                                                                                                                             |            | 100    |
| $\overline{\lambda}_{LT} = \sqrt{\frac{W_{y}f_{y}}{M_{cr}}}$                                                                                                                                                              | 6.3.2.2(1) | )      |
| BS EN1993-1-1 does not give a method for determining the elastic critical moment for lateral-torsional buckling ( $M_{cr}$ ). The approach given in SCI publication P362 is used to determine $\overline{\lambda}_{LT}$ . |            |        |
| It should be noted that the approach for determining $\overline{\lambda}_{LT}$ given in SCI P362 is conservative; other approaches that may be used are:                                                                  |            |        |
| • Determine $M_{\rm cr}$ from either:                                                                                                                                                                                     |            |        |
| <ul> <li>Hand calculations</li> </ul>                                                                                                                                                                                     |            |        |
| – Software programmes e.g. ' <i>LTBeam</i> '                                                                                                                                                                              |            |        |
| • Determine $\overline{\lambda}_{LT}$ using the more exact method, see Example 4.                                                                                                                                         |            |        |
| Using the P362 method:                                                                                                                                                                                                    | P362 5.6   | 2.1(5) |
| $\bar{\lambda}_{\rm LT}. = \left(\frac{1}{\sqrt{C_1}}\right) 0.9 \bar{\lambda} \sqrt{\beta}_{\rm w}$                                                                                                                      |            |        |
| Based on the bending moment diagram in Figure 11.1                                                                                                                                                                        | P362 Tab   | le 5.5 |
| $\frac{1}{\sqrt{C_1}} = 0.75$                                                                                                                                                                                             |            |        |
| $\lambda_1 = 86 \text{ (for S275 Steel)}$                                                                                                                                                                                 | P362 Tab   | le 5.2 |
| $\overline{\lambda}_{z} = \left(\frac{L_{z}}{i_{z}}\right)\left(\frac{1}{\lambda_{1}}\right) = \left(\frac{5000}{51.3}\right) \times \left(\frac{1}{86}\right) = 1.13$                                                    |            |        |
| For Class 1 and 2 sections                                                                                                                                                                                                |            |        |
| $\beta_{\rm w} = 1.00$                                                                                                                                                                                                    |            |        |
| $\overline{\lambda}_{\rm LT} = \left(\frac{1}{\sqrt{C_1}}\right) 0.9 \overline{\lambda} \sqrt{\beta}_{\rm w} = 0.75 \times 0.9 \times 1.13 \times \sqrt{1} = 0.76$                                                        |            |        |
| $\Phi_{\rm LT} = 0.5 \left[ 1 + \alpha_{\rm LT} \left( \overline{\lambda}_{\rm LT} - \overline{\lambda}_{\rm LT,0} \right) + \beta \overline{\lambda}_{\rm LT}^2 \right]$                                                 | 6.3.2.3(1) | )      |
| $= 0.5 \times [1 + 0.34 \times (0.76 - 0.4) + (0.75 \times 0.76^{2})] = 0.78$                                                                                                                                             |            |        |
| $\chi_{\rm LT} = \frac{1}{\varphi_{\rm LT} + \sqrt{\varphi_{\rm LT}^2 - \beta \overline{\lambda}_{\rm LT}^2}}$                                                                                                            | Eq (6.57)  |        |
| $\chi_{\rm LT} = \frac{1}{0.78 + \sqrt{0.78^2 - (0.75 \times 0.76^2)}} = 0.83$                                                                                                                                            |            |        |
| $\frac{1}{\bar{\lambda}_{\rm LT}^2} = \frac{1}{0.76^2} = 1.73$                                                                                                                                                            |            |        |
| 0.83 < 1.0 < 1.78                                                                                                                                                                                                         | 6.3.2.3(2) | )      |
| Therefore,                                                                                                                                                                                                                |            |        |
| $\chi_{\rm LT} = 0.83$                                                                                                                                                                                                    | Eq (6.58)  |        |

| Example 11 - Biaxial bending and compressions of a Class 1/2 section Sheet 9                                                                                                                               | of 14 Rev                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| To account for the bending moment distribution between restraints, $\chi_{LT}$ may be modified as follows:                                                                                                 |                                      |
| $\chi_{\text{LT,mod}} = \frac{\chi_{\text{LT}}}{f} \text{ but } \chi_{\text{LT,mod}} \leq 1.0$                                                                                                             |                                      |
| $f = 1 - 0.5(1 - k_c)[1 - 2(\overline{\lambda}_{LT} - 0.8)^2] \text{ but } f \le 1.0$                                                                                                                      | 6.3.2.3(2)                           |
| $k_{\rm c} = \frac{1}{\sqrt{C_1}}$                                                                                                                                                                         | NA.2.18                              |
| м<br>////////////////////////////////////                                                                                                                                                                  |                                      |
| For the above major axis bending moment diagram                                                                                                                                                            |                                      |
| $\psi = 0.0$ therefore,                                                                                                                                                                                    |                                      |
| $k_{\rm c} = \frac{1}{\sqrt{C_1}} = 0.75$                                                                                                                                                                  | Access Steel<br>SN002 Table 2.1      |
| $f = 1 - 0.5 \times (1 - 0.75) \times [1 - 2 \times (0.76 - 0.8)^2] = 0.88$                                                                                                                                | 6.3.2.3(2)                           |
| 0.88 < 1.0                                                                                                                                                                                                 |                                      |
| Therefore,                                                                                                                                                                                                 |                                      |
| f = 0.88                                                                                                                                                                                                   |                                      |
| Thus,                                                                                                                                                                                                      | <b>F</b> <sub>1</sub> (( <b>50</b> ) |
| $\chi_{\rm LT,mod} = \frac{0.83}{0.88} = 0.94$                                                                                                                                                             | Eq (6.58)                            |
| 0.94 < 1.0                                                                                                                                                                                                 |                                      |
| Therefore,                                                                                                                                                                                                 |                                      |
| $\chi_{\rm LT,mod} = 0.94$                                                                                                                                                                                 |                                      |
| Interaction factors ( $k_{yi} \& k_{zi}$ )                                                                                                                                                                 |                                      |
| The interaction factors are determined from either Annex A (method 1) or<br>Annex B (method 2) of BS EN 1993-1-1. For doubly symmetric sections, the<br>UK National Annex allows the use of either method. | NA.2.21                              |
| Here the method given in Annex B is used, which is recommended for hand calculations.                                                                                                                      |                                      |
|                                                                                                                                                                                                            |                                      |
|                                                                                                                                                                                                            |                                      |
|                                                                                                                                                                                                            |                                      |
|                                                                                                                                                                                                            |                                      |

| Example 11 - Biaxial bending and compressions of a Class 1/2 section Sheet 10                                                                                                                                                                                                                                                                                                     | of 14     | Rev |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                   |           |     |
| From the bending moment diagrams for both the y-y and z-z axes, $\psi = 0.0$<br>Therefore<br>$C_{\rm my} = C_{\rm mz} = C_{\rm mLT} = 0.6 + (0.4 \times 0) = 0.6$<br>For members susceptible to torsional deformations, the expressions given in<br>Table B.2 should be used to calculate the interaction factors.                                                                | Table B.  | 3   |
| Factor $k_{yy}$<br>Table B.2 refers to the expression given in Table B.1.<br>For Class 1 and 2 sections.<br>$k_{yy} = C_{my} \left\{ 1 + (\overline{\lambda}_y - 0.2) \left( \frac{N_{Ed}}{\chi_y N_{Rk} / \gamma_{M1}} \right) \right\} \le C_{my} \left\{ 1 + 0.8 \left( \frac{N_{Ed}}{\chi_y N_{Rk} / \gamma_{M1}} \right) \right\}$                                           | Table B.1 |     |
| $0.6 \times \left\{ 1 + (0.66 - 0.2) \left( \frac{590}{(0.8 \times 1614.3)/1} \right) \right\} = 0.73$ $0.6 \left\{ 1 + 0.8 \times \left( \frac{590}{(0.8 \times 1614.3)/1} \right) \right\} = 0.82$ $0.73 < 0.82$                                                                                                                                                                |           |     |
| Therefore<br>$k_{yy} = 0.73$<br>Factor $k_{zz}$<br>Table B.2 refers to the expression given in Table B.1.<br>For Class 1 and 2 I sections.                                                                                                                                                                                                                                        |           |     |
| $k_{zz} = C_{mz} \left\{ 1 + \left( 2\overline{\lambda}_{z} - 0.6 \right) \left[ \frac{N_{Ed}}{\chi_{z} N_{Rk} / \gamma_{M1}} \right] \right\} \le C_{mz} \left\{ 1 + 1.4 \left( \frac{N_{Ed}}{\chi_{z} N_{Rk} / \gamma_{M1}} \right) \right\}$ $0.6 \times \left\{ 1 + \left[ (2 \times 1.13) - 0.6 \right] \left[ \frac{590}{(0.47 \times 1614.3) / 1} \right] \right\} = 1.37$ | Table B.1 |     |
| $0.6 \times \left\{ 1 + 1.4 \times \left( \frac{590}{(0.47 \times 1614.3)/1} \right) \right\} = 1.25$                                                                                                                                                                                                                                                                             |           |     |

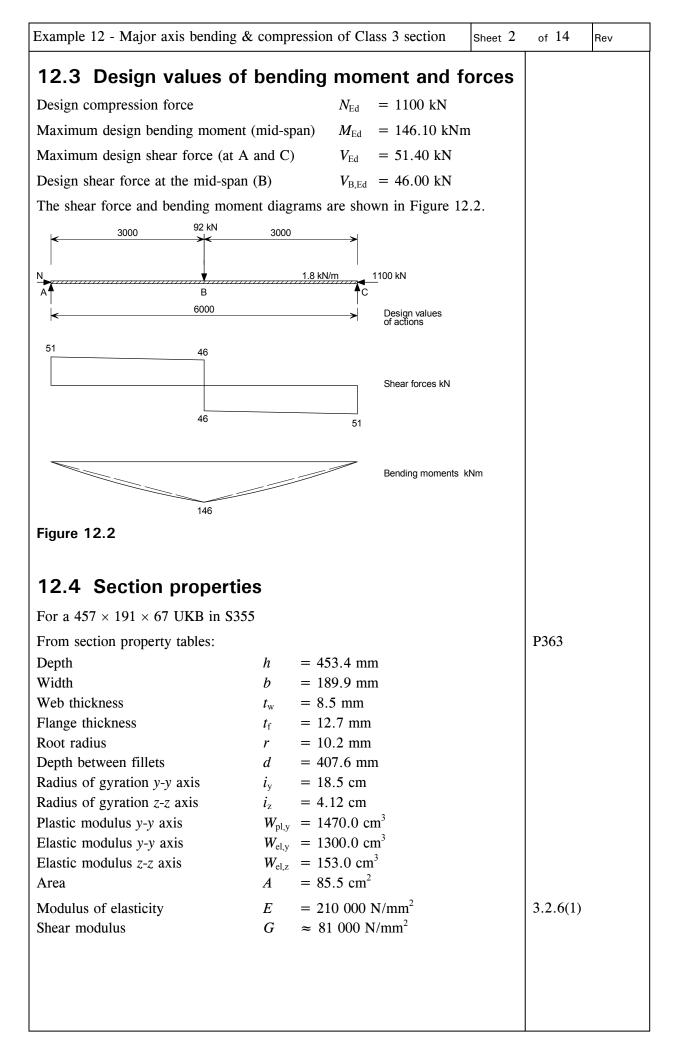
|                                                                                                                                                                                                                                                                                       |           | 1   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|
| Example 11 - Biaxial bending and compressions of a Class 1/2 section Sheet 11                                                                                                                                                                                                         | of 14     | Rev |
| 1.37 > 1.25                                                                                                                                                                                                                                                                           |           |     |
| Therefore, $k_{zz} = 1.25$                                                                                                                                                                                                                                                            |           |     |
| Factor k                                                                                                                                                                                                                                                                              |           |     |
| Factor $k_{yz}$ Table B.2 refers to the expression given in Table B.1.                                                                                                                                                                                                                |           |     |
| For Class 1 and 2 sections.                                                                                                                                                                                                                                                           |           |     |
| $k_{\rm vz} = 0.6k_{\rm zz} = 0.6 \times 1.25 = 0.75$                                                                                                                                                                                                                                 |           |     |
|                                                                                                                                                                                                                                                                                       |           |     |
| Factor k <sub>zy</sub>                                                                                                                                                                                                                                                                |           |     |
| As $\overline{\lambda}_z > 0.4$                                                                                                                                                                                                                                                       |           |     |
| $k_{zy} = 1 - \left(\frac{0.1\bar{\lambda}_z}{C_{mLT} - 0.25}\right) \left(\frac{N_{Ed}}{\chi_z (N_{Rk} / \gamma_{M1})}\right)$                                                                                                                                                       | Table B.2 | 2   |
| $\geq 1 - \left(\frac{0.1}{C_{\rm mLT} - 0.25}\right) \left(\frac{N_{\rm Ed}}{\chi_{\rm z}(N_{\rm Rk} / \gamma_{\rm M1})}\right)$                                                                                                                                                     |           |     |
| $1 - \left\{ \left( \frac{0.1 \times 1.13}{0.6 - 0.25} \right) \times \left( \frac{590}{0.47(1614.3/1)} \right) \right\} = 0.75$                                                                                                                                                      |           |     |
| $1 - \left(\frac{0.1}{0.6 - 0.25}\right) \times \left(\frac{590}{0.47 \times (1614.3/1)}\right) = 0.78$                                                                                                                                                                               |           |     |
| 0.78 > 0.75                                                                                                                                                                                                                                                                           |           |     |
| Therefore, $k_{zy} = 0.78$                                                                                                                                                                                                                                                            |           |     |
| Verification                                                                                                                                                                                                                                                                          |           |     |
| Verify that:                                                                                                                                                                                                                                                                          |           |     |
| $\frac{N_{\text{Ed}}}{\chi_{y}N_{\text{Rk}}/\gamma_{\text{M1}}} + k_{yy} \frac{M_{y.\text{Ed}} + \Delta M_{y.\text{Ed}}}{\chi_{\text{LT}} (M_{y.\text{Rk}}/\gamma_{\text{M1}})} + k_{yz} \frac{M_{z.\text{Ed}} + \Delta M_{z.\text{Ed}}}{M_{z.\text{Rk}}/\gamma_{\text{M1}}} \le 1.0$ | Eq (6.61) |     |
| And:                                                                                                                                                                                                                                                                                  |           |     |
| $\frac{N_{\text{Ed}}}{\chi_{z}N_{\text{Rk}}/\gamma_{\text{M1}}} + k_{zy} \frac{M_{y.\text{Ed}} + \Delta M_{y.\text{Ed}}}{\chi_{\text{LT}} (M_{y.\text{Rk}}/\gamma_{\text{M1}})} + k_{zz} \frac{M_{z.\text{Ed}} + \Delta M_{z.\text{Ed}}}{M_{z.\text{Rk}}/\gamma_{\text{M1}}} \le 1.0$ | Eq (6.62) |     |
| $\frac{590}{(0.8 \times 1614.3)/1} + 0.73 \times \left(\frac{30}{0.94 \times (136.7/1)}\right) + 0.75 \times \left(\frac{1}{63.5/1}\right) = 0.64$                                                                                                                                    | Eq (6.61) |     |
| $\frac{590}{(0.47 \times 1614.3)/1} + 0.78 \times \left(\frac{30}{0.94 \times (136.7/1)}\right) + 1.25 \times \left(\frac{1}{63.5/1}\right) = 0.98$                                                                                                                                   | Eq (6.62) |     |
| $ (0.47 \times 1614.3)/1 \qquad (0.94 \times (136.7/1)) \qquad (63.5/1) $                                                                                                                                                                                                             |           |     |
| As, 0.64 < 1.0 and 0.98 < 1.0                                                                                                                                                                                                                                                         |           |     |
| The buckling resistance of the $203 \times 203 \times 46$ UKC in S275 steel under combined bending and compression is adequate.                                                                                                                                                       |           |     |
|                                                                                                                                                                                                                                                                                       |           |     |
|                                                                                                                                                                                                                                                                                       |           |     |
|                                                                                                                                                                                                                                                                                       | 1         |     |

| Example 11 - Biaxial bending and compressions of a Class 1/2 section Sheet 12                                                                                                               | of 14 Rev                                               |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|
| <b>11.8 Blue Book Approach</b><br>The design resistances may be obtained from SCI publication P363.                                                                                         | Page references<br>given in Section<br>11.8 are to P363 |  |  |
| Consider a $203 \times 203 \times 46$ UKC in S275 steel                                                                                                                                     | unless otherwise<br>stated.                             |  |  |
| 11.8.1 Design value of bending moments and compression force                                                                                                                                |                                                         |  |  |
| Design bending moment about the y-y axis $M_{y,Ed} = 30 \text{ kNm}$ Design bending moment about the z-z axis $M_{z,Ed} = 1 \text{ kNm}$ Design compression force $N_{Ed} = 590 \text{ kN}$ |                                                         |  |  |
| 11.8.2 Cross section classification                                                                                                                                                         |                                                         |  |  |
| $N_{\rm pl,Rd}$ = 1610 kN                                                                                                                                                                   | Page C-166                                              |  |  |
| $n = \frac{N_{\rm Ed}}{N_{\rm pl,Rd}}$                                                                                                                                                      |                                                         |  |  |
| Limiting value of $n$ for Class 2 sections is 1.0                                                                                                                                           | Page C-166                                              |  |  |
| $n = \frac{590}{1610} = 0.37 < 1.0$                                                                                                                                                         |                                                         |  |  |
| Therefore, under combined axial compression and bending the section is at least Class 2.                                                                                                    |                                                         |  |  |
| 11.8.3 Cross-sectional resistance                                                                                                                                                           |                                                         |  |  |
| For Class 1 or 2 cross sections there are two verifications that may be performed.                                                                                                          |                                                         |  |  |
| Verification 1 (conservative)                                                                                                                                                               |                                                         |  |  |
| Verify that:                                                                                                                                                                                |                                                         |  |  |
| $\frac{N_{\rm Ed}}{N_{\rm pl,Rd}} + \frac{M_{\rm y,Ed}}{M_{\rm c,y,Rd}} + \frac{M_{\rm z,Ed}}{M_{\rm c,z,Rd}} \le 1.0$                                                                      | 6.2.1(7)                                                |  |  |
| $M_{\rm c,y,Rd} = 137 \text{ kNm}$                                                                                                                                                          | Page C-78                                               |  |  |
| $M_{\rm c,z,Rd} = 63.5 \text{ kNm}$                                                                                                                                                         |                                                         |  |  |
| $\frac{N_{\rm Ed}}{N_{\rm pl,Rd}} + \frac{M_{\rm y,Ed}}{M_{\rm c,y,Rd}} + \frac{M_{\rm z,Ed}}{M_{\rm c,z,Rd}} = \frac{590}{1610} + \frac{30}{137} + \frac{1}{63.5} = 0.6 < 1.0$             |                                                         |  |  |
| Therefore this verification is satisfied.                                                                                                                                                   |                                                         |  |  |
| Varification 2 (more exact)                                                                                                                                                                 |                                                         |  |  |
| Verification 2 (more exact)<br>Verify that:                                                                                                                                                 |                                                         |  |  |
| $\left(\frac{M_{\rm y,Ed}}{M_{\rm N,y,Rd}}\right)^{\alpha} + \left(\frac{M_{\rm z,Ed}}{M_{\rm N,z,Rd}}\right)^{\beta} \le 1.0$                                                              | 6.2.9.1(6)<br>Eq (6.41)                                 |  |  |
| From the earlier calculations,                                                                                                                                                              | Sheet 5                                                 |  |  |
| $\alpha = 2 \text{ and } \beta = 1.85$                                                                                                                                                      |                                                         |  |  |
| n = 0.37                                                                                                                                                                                    |                                                         |  |  |
|                                                                                                                                                                                             |                                                         |  |  |

| Г                                                                                                                                                                                                           |                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Example 11 - Biaxial bending and compressions of a Class 1/2 section Sheet 13                                                                                                                               | of 14 Rev                          |
| From interpolation between $n = 0.3$ and $n = 0.4$ :                                                                                                                                                        |                                    |
| $M_{\rm N,y,Rd}$ = 97.9 kNm                                                                                                                                                                                 | Page C-166                         |
| $M_{\rm N,z,Rd} = 61.3 \text{ kNm}$                                                                                                                                                                         |                                    |
| $\left(\frac{M_{\rm y,Ed}}{M_{\rm N,y,Rd}}\right)^{\alpha} + \left(\frac{M_{\rm z,Ed}}{M_{\rm N,z,Rd}}\right)^{\beta} = \left(\frac{30}{97.9}\right)^{2} + \left(\frac{1}{61.3}\right)^{1.85} = 0.09 < 1.0$ |                                    |
| Therefore the cross-sectional resistance is adequate.                                                                                                                                                       |                                    |
| 11.8.4 Buckling resistance                                                                                                                                                                                  |                                    |
| Buckling resistance under bending and axial compression                                                                                                                                                     |                                    |
| When both of the following criteria are satisfied:                                                                                                                                                          |                                    |
| • The cross section is Class 1, 2 or 3                                                                                                                                                                      |                                    |
| • $\gamma_{M1} = \gamma_{M0}$                                                                                                                                                                               |                                    |
| The buckling verification given in 6.3.3 (Expressions 6.61 & 6.62) of BS EN 1993-1-1 may be simplified to:                                                                                                  |                                    |
| $\frac{N_{\rm Ed}}{N_{\rm b,y,Rd}} + k_{\rm yy} \frac{M_{\rm y.Ed}}{M_{\rm b,Rd}} + k_{\rm yz} \frac{M_{\rm z.Ed}}{M_{\rm c,z,Rd}} \le 1.0$                                                                 |                                    |
| $\frac{N_{\rm Ed}}{N_{\rm b,z,Rk}} + k_{\rm zy} \frac{M_{\rm y.Ed}}{M_{\rm b,Rk}} + k_{\rm zz} \frac{M_{\rm z.Ed}}{M_{\rm c,z,Rd}} \le 1.0$                                                                 |                                    |
| From Section 11.7, the values of the interaction factors are:                                                                                                                                               |                                    |
| $k_{yy} = 0.73$                                                                                                                                                                                             |                                    |
| $k_{yz} = 0.75$ $k_{zy} = 0.78$                                                                                                                                                                             |                                    |
| $k_{zz} = 1.25$                                                                                                                                                                                             |                                    |
| For a buckling length of $L = 5$ m and $n = 0.37 < 1.0$                                                                                                                                                     | Page C-13                          |
| $N_{\rm b,y,Rd} = 1310 \text{ kNm}$                                                                                                                                                                         |                                    |
| $N_{\rm b,z,Rd} = 762 \mathrm{kNm}$                                                                                                                                                                         | $\mathbf{D}_{2,2,2} \subset 7^{Q}$ |
| $M_{\rm c,z,Rd} = 63.5 \mathrm{kNm}$                                                                                                                                                                        | Page C-78                          |
| From Section 11.7 of this example                                                                                                                                                                           | Sheet 9                            |
| $\frac{1}{\sqrt{C_1}} = 0.75$                                                                                                                                                                               | Slicet 9                           |
| Therefore,                                                                                                                                                                                                  |                                    |
| $C_1 = \left(\frac{1}{0.75}\right)^2 = 1.78$                                                                                                                                                                |                                    |
| From interpolation for $C_1 = 1.78$ and $L = 5$ m                                                                                                                                                           |                                    |
| $M_{\rm b,Rd} = 135 \ \rm kNm$                                                                                                                                                                              | Page C-78                          |
|                                                                                                                                                                                                             |                                    |
|                                                                                                                                                                                                             |                                    |
|                                                                                                                                                                                                             |                                    |
|                                                                                                                                                                                                             |                                    |

Example 11 - Biaxial bending and compressions of a Class 1/2 section Sheet 14 of 14

Rev


Verifications:

$$\left(\frac{590}{1310}\right) + 0.73 \times \left(\frac{30}{135}\right) + 0.75 \times \left(\frac{1}{63.5}\right) = 0.62 < 1.0$$
$$\left(\frac{590}{762}\right) + 0.78 \times \left(\frac{30}{135}\right) + 1.25 \times \left(\frac{1}{63.5}\right) = 0.97 < 1.0$$

Therefore, the buckling resistance is adequate.

Note that in this instance, the 'blue book' approach appears to give less onerous result than the preceding calculations. This is because in the preceding calculations  $\chi_{LT}$  was conservatively based on a simple 0.9 factor in the calculation of  $\lambda_{LT}$ .

|                                                                                                                                                                         | Job No.                           | CDS164                                                          |                                               | Sheet 1                      | of                    | 14                                   | Rev                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------|-----------------------------------------------|------------------------------|-----------------------|--------------------------------------|-------------------------------------------------------|
|                                                                                                                                                                         | Job Title                         | Worked examples to the Eurocode                                 |                                               |                              | es with               | ı UK                                 | NA                                                    |
| Silwood Park, Ascot, Berks SL5 7QN<br>Telephone: (01344) 636525                                                                                                         | Subject                           | ject Example 12 - Major axis bending<br>Class 3 section         |                                               |                              |                       | ompro                                | ession of                                             |
| Fax: (01344) 636570                                                                                                                                                     | Client                            | SCI                                                             | Made by                                       | MEB                          | Date                  | Feb                                  | 2009                                                  |
| CALCULATION SHEET                                                                                                                                                       |                                   | 501                                                             | Checked by                                    | DGB                          | Date                  | Jul 2                                | 2009                                                  |
| <ul> <li>12 Major axis ben<br/>of a Class 3 se</li> <li>12.1 Scope</li> <li>The beam shown in Figure 12.1 is s</li> </ul>                                               | ection                            | 1                                                               | -                                             |                              | BS E<br>2005<br>Natio | EN 19<br>5, incl<br>onal 2<br>55 oth | s are to<br>93-1-1:<br>Juding its<br>Annex,<br>erwise |
| concentrated load at its mid-span. T<br>movement and torsion by the second<br>otherwise unrestrained. The beam is<br>the major and minor axes. Verify th<br>S355 steel. | The beam<br>lary beam<br>s assume | is restrained and is restrained at n connected at the be pinned | against later<br>its mid-spa<br>l at its ends | ral<br>in, but is<br>in both |                       |                                      |                                                       |
| A B<br>6000                                                                                                                                                             | 3                                 | 3000<br>-<br>-<br>-<br>-<br>-                                   |                                               |                              |                       |                                      |                                                       |
| Figure 12.1<br>The design aspects covered in this ex                                                                                                                    | xample a                          | ire:                                                            |                                               |                              |                       |                                      |                                                       |
| • Cross section classification                                                                                                                                          |                                   |                                                                 |                                               |                              |                       |                                      |                                                       |
| • Cross sectional resistance:                                                                                                                                           |                                   |                                                                 |                                               |                              |                       |                                      |                                                       |
| <ul> <li>Shear buckling</li> <li>Shear</li> </ul>                                                                                                                       |                                   |                                                                 |                                               |                              |                       |                                      |                                                       |
| – Sileal<br>– Moment                                                                                                                                                    |                                   |                                                                 |                                               |                              |                       |                                      |                                                       |
| Lateral torsional buckling resista                                                                                                                                      | nce.                              |                                                                 |                                               |                              |                       |                                      |                                                       |
| <b>12.2 Design value of concentrated</b> load $F_{d,1} = 92$<br>UDL $F_{d,2} = 1.8$<br>The action that gives rise to the com                                            | kN<br>8 kN/m                      |                                                                 |                                               | of the                       |                       |                                      |                                                       |
| variable actions included in the conc<br>present in the same combination of a                                                                                           | entrated                          |                                                                 | -                                             |                              |                       |                                      |                                                       |



| For buildings that will be built in the UK, the nominal values of the year<br>For buildings that will be built in the UK, the nominal values of the year<br>obtained from the product standard. Where a range is given, the lowest<br>nominal value should be used.<br>For S355 steel and $t \le 16$ mm<br>Yield strength, $f_y = R_{eff} = 355$ N/mm <sup>2</sup><br><b>12.4.1 Cross section classification</b><br>$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{355}} = 0.81$<br>Outstand of compression flange<br>$c = \frac{b - t_w - 2r}{2} = \frac{189.9 - 8.5 - (2 \times 10.2)}{2} = 80.5$ mm<br>$\frac{c}{t_f} = \frac{80.5}{12.7} = 6.34$<br>The limiting value for Class 1 is $\frac{c}{t_f} \le 9\varepsilon = 9 \times 0.81 = 7.29$<br>6.34 < 7.29<br>Therefore the flange is Class 1.<br>Web subject to bending and to compression force $N_{ed} = 1100$ kN<br>c = d = 407.6 mm<br>$\frac{c}{t_w} = \frac{407.6}{8.5} = 47.95$<br>For plastic stress distribution,<br>$\alpha = 0.5 \left[ 1 + \left( \frac{N_{Ed}}{f_y t_w d} \right) \right] = 0.5 \times \left[ 1 + \left( \frac{1100 \times 10^3}{355 \times 8.5 \times 407.6} \right) \right] = 0.95$<br>but $-1 < \alpha \le 1$<br>Therefore the limiting value for Class 2 is:<br>$\frac{c}{t_w} \le \frac{456 \varepsilon}{13\alpha - 1} = \frac{456 \times 0.81}{(13 \times 0.95) - 1} = 32.54 < 47.95$<br>Therefore the web is not class 1 or 2<br>For elastic stress distribution,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Example 12 - Major axis bending & compression of Class 3 section                                                                                                                                                                      | Sheet 3      | of 14     | Rev    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|--------|
| Yield strength, $f_y = R_{cH} = 355 \text{ N/mm}^2$<br><b>12.4.1 Cross section classification</b><br>$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{355}} = 0.81$<br>Outstand of compression flange<br>$c = \frac{b - t_w - 2r}{2} = \frac{189.9 - 8.5 - (2 \times 10.2)}{2} = 80.5 \text{ mm}$<br>$\frac{c}{t_r} = \frac{80.5}{12.7} = 6.34$<br>The limiting value for Class 1 is $\frac{c}{t_r} \le 9\varepsilon = 9 \times 0.81 = 7.29$<br>6.34 < 7.29<br>Therefore the flange is Class 1.<br>Web subject to bending and to compression force $N_{\rm Fd} = 1100 \text{ kN}$<br>c = d = 407.6  mm<br>$\frac{c}{t_w} = \frac{407.6}{8.5} = 47.95$<br>For plastic stress distribution,<br>$\alpha = 0.5 \left[ 1 + \left( \frac{N_{Ed}}{f_y t_w d} \right) \right] = 0.5 \times \left[ 1 + \left( \frac{1100 \times 10^3}{355 \times 8.5 \times 407.6} \right) \right] = 0.95$<br>but $-1 < \alpha \le 1$<br>Therefore $\alpha = 0.95$<br>As $\alpha > 0.5$ the limiting value for Class 2 is:<br>$\frac{c}{t_w} \le \frac{456\varepsilon}{13\alpha - 1} = \frac{456 \times 0.81}{(13 \times 0.95) - 1} = 32.54 < 47.95$<br>Therefore the web is not class 1 or 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | For buildings that will be built in the UK, the nominal values of the yield strength $(f_y)$ and the ultimate strength $(f_u)$ for structural steel should be a obtained from the product standard. Where a range is given, the lowes | eld<br>those |           |        |
| $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{355}} = 0.81$ Cutstand of compression flange $c = \frac{b - t_w - 2r}{2} = \frac{189.9 - 8.5 - (2 \times 10.2)}{2} = 80.5 \text{ mm}$ Table 5.2 Table 5.2 $\frac{c}{t_t} = \frac{80.5}{12.7} = 6.34$ The limiting value for Class 1 is $\frac{c}{t_f} \le 9\varepsilon = 9 \times 0.81 = 7.29$ $6.34 < 7.29$ Therefore the flange is Class 1. Web subject to bending and to compression force $N_{\text{Ed}} = 1100 \text{ kN}$ $c = d = 407.6 \text{ mm}$ $\frac{c}{t_w} = \frac{407.6}{8.5} = 47.95$ For plastic stress distribution, $\alpha = 0.5 \left[ 1 + \left( \frac{N_{\text{Ed}}}{f_y t_w d} \right) \right] = 0.5 \times \left[ 1 + \left( \frac{1100 \times 10^3}{355 \times 8.5 \times 407.6} \right) \right] = 0.95$ Dut $-1 < \alpha \le 1$ Therefore $\alpha = 0.95$ As $\alpha > 0.5$ the limiting value for Class 2 is: $\frac{c}{t_w} \le \frac{456 \varepsilon}{13\alpha - 1} = \frac{456 \times 0.81}{(13 \times 0.95) - 1} = 32.54 < 47.95$ Therefore the web is not class 1 or 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                       |              |           | 0025-2 |
| $\varepsilon = \sqrt{\frac{233}{f_y}} = \sqrt{\frac{233}{355}} = 0.81$ Outstand of compression flange $c = \frac{b - t_w - 2r}{2} = \frac{189.9 - 8.5 - (2 \times 10.2)}{2} = 80.5 \text{ mm}$ Table 5.2 Table 5 | 12.4.1 Cross section classification                                                                                                                                                                                                   |              |           |        |
| $c = \frac{b - t_w - 2r}{2} = \frac{189.9 - 8.5 - (2 \times 10.2)}{2} = 80.5 \text{ mm}$ $\frac{c}{t_f} = \frac{80.5}{12.7} = 6.34$ The limiting value for Class 1 is $\frac{c}{t_f} \le 9\varepsilon = 9 \times 0.81 = 7.29$ $6.34 < 7.29$ Therefore the flange is Class 1. Web subject to bending and to compression force $N_{Ed} = 1100 \text{ kN}$ $c = d = 407.6 \text{ mm}$ $\frac{c}{t_w} = \frac{407.6}{8.5} = 47.95$ For plastic stress distribution, $\alpha = 0.5 \left[ 1 + \left( \frac{N_{Ed}}{f_y t_w d} \right) \right] = 0.5 \times \left[ 1 + \left( \frac{1100 \times 10^3}{355 \times 8.5 \times 407.6} \right) \right] = 0.95$ P362 Table 5.1 P362 Table 5.1 $\frac{c}{t_w} \le \frac{456\varepsilon}{13\alpha - 1} = \frac{456 \times 0.81}{(13 \times 0.95) - 1} = 32.54 < 47.95$ Therefore the web is not class 1 or 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{355}} = 0.81$                                                                                                                                                                |              | Table 5.2 |        |
| $\frac{c}{t_{t}} = \frac{80.5}{12.7} = 6.34$ The limiting value for Class 1 is $\frac{c}{t_{t}} \le 9\varepsilon = 9 \times 0.81 = 7.29$ $6.34 < 7.29$ Therefore the flange is Class 1. Web subject to bending and to compression force $N_{Ed} = 1100 \text{ kN}$ $c = d = 407.6 \text{ mm}$ Table 5.2 $\frac{c}{t_{w}} = \frac{407.6}{8.5} = 47.95$ For plastic stress distribution, $\alpha = 0.5 \left[ 1 + \left( \frac{N_{Ed}}{f_y t_w d} \right) \right] = 0.5 \times \left[ 1 + \left( \frac{1100 \times 10^3}{355 \times 8.5 \times 407.6} \right) \right] = 0.95$ P362 Table5.1 Dut $-1 < \alpha \le 1$ Therefore $\alpha = 0.95$ As $\alpha > 0.5$ the limiting value for Class 2 is: $\frac{c}{t_w} \le \frac{456\varepsilon}{13\alpha - 1} = \frac{456 \times 0.81}{(13 \times 0.95) - 1} = 32.54 < 47.95$ Therefore the web is not class 1 or 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Outstand of compression flange                                                                                                                                                                                                        |              |           |        |
| The limiting value for Class 1 is $\frac{c}{t_f} \le 9\varepsilon = 9 \times 0.81 = 7.29$<br>6.34 < 7.29<br>Therefore the flange is Class 1.<br>Web subject to bending and to compression force $N_{Ed} = 1100 \text{ kN}$<br>c = d = 407.6  mm<br>$\frac{c}{t_w} = \frac{407.6}{8.5} = 47.95$<br>For plastic stress distribution,<br>$\alpha = 0.5 \left[ 1 + \left( \frac{N_{Ed}}{f_y t_w d} \right) \right] = 0.5 \times \left[ 1 + \left( \frac{1100 \times 10^3}{355 \times 8.5 \times 407.6} \right) \right] = 0.95$<br>but $-1 < \alpha \le 1$<br>Therefore $\alpha = 0.95$<br>As $\alpha > 0.5$ the limiting value for Class 2 is:<br>$\frac{c}{t_w} \le \frac{456\varepsilon}{13\alpha - 1} = \frac{456 \times 0.81}{(13 \times 0.95) - 1} = 32.54 < 47.95$<br>Therefore the web is not class 1 or 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $c = \frac{b - t_w - 2r}{2} = \frac{189.9 - 8.5 - (2 \times 10.2)}{2} = 80.5 \text{ mm}$                                                                                                                                              |              | Table 5.2 |        |
| $t_{f}$ 6.34 < 7.29<br>Therefore the flange is Class 1.<br>Web subject to bending and to compression force $N_{Ed} = 1100 \text{ kN}$<br>c = d = 407.6  mm<br>$\frac{c}{t_{w}} = \frac{407.6}{8.5} = 47.95$<br>For plastic stress distribution,<br>$\alpha = 0.5 \left[ 1 + \left( \frac{N_{Ed}}{f_{y} t_{w} d} \right) \right] = 0.5 \times \left[ 1 + \left( \frac{1100 \times 10^{3}}{355 \times 8.5 \times 407.6} \right) \right] = 0.95$<br>But $-1 < \alpha \le 1$<br>Therefore $\alpha = 0.95$<br>As $\alpha > 0.5$ the limiting value for Class 2 is:<br>$\frac{c}{t_{w}} \le \frac{456 \varepsilon}{13 \alpha - 1} = \frac{456 \times 0.81}{(13 \times 0.95) - 1} = 32.54 < 47.95$<br>Therefore the web is not class 1 or 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{c}{t_{\rm f}} = \frac{80.5}{12.7} = 6.34$                                                                                                                                                                                      |              |           |        |
| 6.34 < 7.29<br>Therefore the flange is Class 1.<br>Web subject to bending and to compression force $N_{Ed} = 1100 \text{ kN}$<br>c = d = 407.6  mm<br>Table 5.2<br>Table 5.2<br>For plastic stress distribution,<br>$\alpha = 0.5 \left[ 1 + \left( \frac{N_{Ed}}{f_y t_w d} \right) \right] = 0.5 \times \left[ 1 + \left( \frac{1100 \times 10^3}{355 \times 8.5 \times 407.6} \right) \right] = 0.95$<br>But $-1 < \alpha \le 1$<br>Therefore $\alpha = 0.95$<br>As $\alpha > 0.5$ the limiting value for Class 2 is:<br>$\frac{c}{t_w} \le \frac{456 \varepsilon}{13 \alpha - 1} = \frac{456 \times 0.81}{(13 \times 0.95) - 1} = 32.54 < 47.95$<br>Therefore the web is not class 1 or 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                       |              |           |        |
| Web subject to bending and to compression force $N_{Ed} = 1100 \text{ kN}$<br>c = d = 407.6  mm<br>Table 5.2<br>Table 5.2<br>For plastic stress distribution,<br>$\alpha = 0.5 \left[ 1 + \left( \frac{N_{Ed}}{f_y t_w d} \right) \right] = 0.5 \times \left[ 1 + \left( \frac{1100 \times 10^3}{355 \times 8.5 \times 407.6} \right) \right] = 0.95$<br>but $-1 < \alpha \le 1$<br>Therefore $\alpha = 0.95$<br>As $\alpha > 0.5$ the limiting value for Class 2 is:<br>$\frac{c}{t_w} \le \frac{456\varepsilon}{13\alpha - 1} = \frac{456 \times 0.81}{(13 \times 0.95) - 1} = 32.54 < 47.95$<br>Therefore the web is not class 1 or 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                       |              |           |        |
| $c = d = 407.6 \text{ mm}$ $\frac{c}{t_w} = \frac{407.6}{8.5} = 47.95$ For plastic stress distribution, $\alpha = 0.5 \left[ 1 + \left( \frac{N_{Ed}}{f_y t_w d} \right) \right] = 0.5 \times \left[ 1 + \left( \frac{1100 \times 10^3}{355 \times 8.5 \times 407.6} \right) \right] = 0.95$ P362 Table5.1 $but - 1 < \alpha \le 1$ Therefore $\alpha = 0.95$ As $\alpha > 0.5$ the limiting value for Class 2 is: $\frac{c}{t_w} \le \frac{456\varepsilon}{13\alpha - 1} = \frac{456 \times 0.81}{(13 \times 0.95) - 1} = 32.54 < 47.95$ Therefore the web is not class 1 or 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Therefore the flange is Class 1.                                                                                                                                                                                                      |              |           |        |
| $\frac{c}{t_{w}} = \frac{407.6}{8.5} = 47.95$ For plastic stress distribution,<br>$\alpha = 0.5 \left[ 1 + \left( \frac{N_{Ed}}{f_{y} t_{w} d} \right) \right] = 0.5 \times \left[ 1 + \left( \frac{1100 \times 10^{3}}{355 \times 8.5 \times 407.6} \right) \right] = 0.95$ P362 Table5.1 but $-1 < \alpha \le 1$ Therefore $\alpha = 0.95$ As $\alpha > 0.5$ the limiting value for Class 2 is:<br>$\frac{c}{t_{w}} \le \frac{456 \varepsilon}{13 \alpha - 1} = \frac{456 \times 0.81}{(13 \times 0.95) - 1} = 32.54 < 47.95$ Therefore the web is not class 1 or 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Web subject to bending and to compression force $N_{\rm Ed} = 1100 \text{ kN}$                                                                                                                                                        |              |           |        |
| For plastic stress distribution,<br>$\alpha = 0.5 \left[ 1 + \left( \frac{N_{Ed}}{f_y t_w d} \right) \right] = 0.5 \times \left[ 1 + \left( \frac{1100 \times 10^3}{355 \times 8.5 \times 407.6} \right) \right] = 0.95$ P362 Table5.1<br>but -1 < $\alpha \le 1$<br>Therefore $\alpha = 0.95$<br>As $\alpha > 0.5$ the limiting value for Class 2 is:<br>$\frac{c}{t_w} \le \frac{456 \varepsilon}{13 \alpha - 1} = \frac{456 \times 0.81}{(13 \times 0.95) - 1} = 32.54 < 47.95$<br>Therefore the web is not class 1 or 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c = d = 407.6  mm                                                                                                                                                                                                                     |              | Table 5.2 |        |
| $\alpha = 0.5 \left[ 1 + \left( \frac{N_{Ed}}{f_y t_w d} \right) \right] = 0.5 \times \left[ 1 + \left( \frac{1100 \times 10^3}{355 \times 8.5 \times 407.6} \right) \right] = 0.95$ P362 Table5.1<br>but $-1 < \alpha \le 1$ Therefore $\alpha = 0.95$ As $\alpha > 0.5$ the limiting value for Class 2 is: $\frac{c}{t_w} \le \frac{456\varepsilon}{13\alpha - 1} = \frac{456 \times 0.81}{(13 \times 0.95) - 1} = 32.54 < 47.95$ Therefore the web is not class 1 or 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{c}{t_{\rm w}} = \frac{407.6}{8.5} = 47.95$                                                                                                                                                                                     |              |           |        |
| but $-1 < \alpha \le 1$<br>Therefore $\alpha = 0.95$<br>As $\alpha > 0.5$ the limiting value for Class 2 is:<br>$\frac{c}{t_w} \le \frac{456\varepsilon}{13\alpha - 1} = \frac{456 \times 0.81}{(13 \times 0.95) - 1} = 32.54 < 47.95$<br>Therefore the web is not class 1 or 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | For plastic stress distribution,                                                                                                                                                                                                      |              |           |        |
| Therefore $\alpha = 0.95$<br>As $\alpha > 0.5$ the limiting value for Class 2 is:<br>$\frac{c}{t_w} \le \frac{456\varepsilon}{13\alpha - 1} = \frac{456 \times 0.81}{(13 \times 0.95) - 1} = 32.54 < 47.95$<br>Therefore the web is not class 1 or 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\alpha = 0.5 \left[ 1 + \left( \frac{N_{\rm Ed}}{f_{\rm y} t_{\rm w} d} \right) \right] = 0.5 \times \left[ 1 + \left( \frac{1100 \times 10^3}{355 \times 8.5 \times 407.6} \right) \right] = 0.95$                                  |              | P362 Tab  | le5.1  |
| As $\alpha > 0.5$ the limiting value for Class 2 is:<br>$\frac{c}{t_{w}} \leq \frac{456 \varepsilon}{13 \alpha - 1} = \frac{456 \times 0.81}{(13 \times 0.95) - 1} = 32.54 < 47.95$ Therefore the web is not class 1 or 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | but $-1 < \alpha \le 1$                                                                                                                                                                                                               |              |           |        |
| $\frac{c}{t_{w}} \le \frac{456\varepsilon}{13\alpha - 1} = \frac{456 \times 0.81}{(13 \times 0.95) - 1} = 32.54 < 47.95$<br>Therefore the web is not class 1 or 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Therefore $\alpha = 0.95$                                                                                                                                                                                                             |              |           |        |
| Therefore the web is not class 1 or 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                       |              |           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{c}{t_{\rm w}} \le \frac{456\varepsilon}{13\alpha - 1} = \frac{456 \times 0.81}{\left(13 \times 0.95\right) - 1} = 32.54 < 47.95$                                                                                               |              |           |        |
| For elastic stress distribution,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Therefore the web is not class 1 or 2                                                                                                                                                                                                 |              |           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | For elastic stress distribution,                                                                                                                                                                                                      |              |           |        |
| $\psi = \frac{2N_{\rm Ed}}{Af_{\rm y}} - 1 = \left(\frac{2 \times 110 \times 10^3}{8550 \times 355}\right) - 1 = -0.28$ P362 Table5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\psi = \frac{2N_{\rm Ed}}{Af_{\rm y}} - 1 = \left(\frac{2 \times 110 \times 10^3}{8550 \times 355}\right) - 1 = -0.28$                                                                                                               |              | P362 Tab  | le5.1  |
| As $\psi > -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | As $\psi > -1$                                                                                                                                                                                                                        |              |           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                       |              |           |        |

| 1                                                                                                                                                              |         |                    | 1       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|---------|
| Example 12 - Major axis bending & compression of Class 3 section                                                                                               | Sheet 4 | of 14              | Rev     |
| The limiting value for Class 3 is<br>$\frac{c}{t_{w}} \le \frac{42\varepsilon}{0.67 + 0.33\psi} = \frac{42 \times 0.81}{0.67 + (0.33 \times (-0.28))} = 58.90$ |         |                    |         |
| 32.54 < 47.95 < 58.90                                                                                                                                          |         |                    |         |
| Therefore the web is Class 3 under combined bending and $N_{\rm Ed} = 1100$                                                                                    | kN.     |                    |         |
| Therefore the cross section is Class 3 under combined bending and $N_{\rm Ed} = 1100$ kN.                                                                      |         |                    |         |
| 12.5 Partial factors for resistance                                                                                                                            |         |                    |         |
| $\gamma_{M0} = 1.0$<br>$\gamma_{M1} = 1.0$                                                                                                                     |         | NA.2.15            |         |
| 12.6 Cross-sectional resistance                                                                                                                                |         |                    |         |
| 12.6.1 Shear buckling                                                                                                                                          |         |                    |         |
| The shear buckling resistance for webs should be verified according to Section 5 of BS EN1993-1-5 if:                                                          |         | 6.2.6(6)           |         |
| $\frac{h_{\rm w}}{t_{\rm w}} > 72 \frac{\varepsilon}{\eta}$                                                                                                    |         | Eq (6.23)          |         |
| $\eta = 1.0$<br>$h_w = h - 2t_f = 453.4 - (2 \times 12.7) = 428.0 \text{ mm}$                                                                                  |         | BS EN 19<br>NA.2.4 | 993-1-5 |
| $\frac{h_{\rm w}}{t_{\rm w}} = \frac{428.0}{8.5} = 50.35$                                                                                                      |         |                    |         |
| $72\frac{\varepsilon}{\eta} = 72 \times \frac{0.81}{1.0} = 58.32$                                                                                              |         |                    |         |
| 50.35 < 58.32                                                                                                                                                  |         |                    |         |
| Therefore the shear buckling resistance of the web does not need to be verified.                                                                               |         |                    |         |
| 12.6.2 Shear resistance                                                                                                                                        |         |                    |         |
| Verify that:                                                                                                                                                   |         | 6.2.6(1)           |         |
| $\frac{V_{\rm Ed}}{V_{\rm c,Rd}} \le 1.0$                                                                                                                      |         | Eq (6.17)          |         |
| $V_{c,Rd}$ is the design plastic shear resistance ( $V_{pl,Rd}$ ).                                                                                             |         |                    |         |
| $A_{\rm v}(f_{\rm v}/\sqrt{3})$                                                                                                                                |         | 6.2.6(2)           |         |
| $V_{\rm c,Rd} = V_{\rm pl,Rd} = \frac{A_{\rm v}(f_{\rm y}/\sqrt{3})}{\gamma_{\rm M0}}$                                                                         |         | Eq (6.18)          |         |
| $A_v$ is the shear area and is determined as follows for rolled I and H sect with the load applied parallel to the web.                                        | tions   |                    |         |
|                                                                                                                                                                |         |                    |         |

| Example 12 - Major axis bending & compression of Class 3 section                                                                                                             | Sheet 5 | of 14      | Rev |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|-----|
| $A_{\rm v} = A - 2bt_{\rm f} + t_{\rm f} (t_{\rm w} + 2r)$ but not less than $\eta h_{\rm w} t_{\rm w}$                                                                      |         |            |     |
| $= 85.5 \times 10^{2} - (2 \times 189.9 \times 12.7) + 12.7 \times (8.5 + (2 \times 10.2))$                                                                                  |         |            |     |
| $= 4024 \text{ mm}^2$                                                                                                                                                        |         |            |     |
| $\eta h_{\rm w} t_{\rm w} = 1.0 \times 428 \times 8.5 = 3638.00 \ {\rm mm}^2$                                                                                                |         |            |     |
| Therefore, $A_v = 4094 \text{ mm}^2$                                                                                                                                         |         |            |     |
| Therefore the design plastic shear resistance is:                                                                                                                            |         | 6.2.6(2)   |     |
| $V_{\rm pl,Rd} = \frac{A_{\rm v} \left(f_{\rm y} / \sqrt{3}\right)}{\gamma_{\rm M0}} = \frac{4094 \times (355 / \sqrt{3})}{1.0} \times 10^{-3} = 839 \text{ kN}$             |         | Eq (6.18)  |     |
| Maximum design shear $V_{\rm Ed} = 51.4$ kN                                                                                                                                  |         | Sheet 2    |     |
| $\frac{V_{\rm Ed}}{V_{\rm c,Rd}} = \frac{51.4}{839} = 0.06 < 1.0$                                                                                                            |         |            |     |
| Therefore the shear resistance of the section is adequate.                                                                                                                   |         |            |     |
| 12.6.3 Resistance for combined bending, shear and axial f                                                                                                                    | orce    |            |     |
| Check whether the presence of shear reduces the resistance of the section<br>bending and compression.                                                                        |         |            |     |
| $\frac{V_{\rm pl,Rd}}{2} = \frac{839.0}{2} = 419.50 \text{ kN}$                                                                                                              |         |            |     |
| The design shear force at maximum moment is, $V_{\rm B,Ed}$ = 46.0 kN                                                                                                        |         |            |     |
| 46.0  kN < 419.50  kN                                                                                                                                                        |         |            |     |
| Therefore <b>no reduction</b> in resistance for bending and axial force need be made.                                                                                        | be      | 6.2.10(2)  |     |
| For Class 3 cross sections, the maximum longitudinal stress, in the absorbance shear, $(\sigma_{x,Ed})$ should satisfy the following:                                        | ence of | 6.2.9.2(1) | )   |
| $\sigma_{\rm x,Ed} \leq \frac{f_{\rm y}}{2}$                                                                                                                                 |         | Eq (6.42)  |     |
| γ M0                                                                                                                                                                         |         | Eq (0.42)  |     |
| The maximum longitudinal design stress ( $\sigma_{x,Ed}$ ) is:                                                                                                               |         |            |     |
| $\sigma_{\rm x,Ed} = \frac{N_{\rm Ed}}{A} + \frac{M_{\rm Ed}}{W_{\rm el,y}} = \frac{1100 \times 10^3}{8550} + \frac{146 \times 10^6}{1300 \times 10^3} = 241 \text{ N/mm}^2$ |         |            |     |
| $\frac{f_y}{\gamma_{M0}} = \frac{355}{1.0} = 355 \text{ N/mm}^2$                                                                                                             |         |            |     |
| $241 \text{ N/mm}^2 < 355 \text{ N/mm}^2$                                                                                                                                    |         |            |     |
| Therefore the resistance of the section for combined bending, shear and force is adequate.                                                                                   | axial   |            |     |
|                                                                                                                                                                              |         |            |     |
|                                                                                                                                                                              |         |            |     |
|                                                                                                                                                                              |         |            |     |

| Example 12 - Major axis bending & compression of Class 3 section                                                                                                              | Sheet 6 | of 14                   | Rev |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------|-----|
| 12.7 Buckling resistance                                                                                                                                                      |         |                         |     |
| 12.7.1 Buckling length                                                                                                                                                        |         |                         |     |
| The beam is pinned at both ends and restrained against lateral movement torsion at its mid-span. Therefore the buckling lengths may be taken as                               |         |                         |     |
| Major axis $L_{\rm cr,y} = 6000 \text{ mm}$                                                                                                                                   |         |                         |     |
| Minor axis $L_{cr,z} = 3000 \text{ mm}$                                                                                                                                       |         |                         |     |
| 12.7.2 Combined bending and compression                                                                                                                                       |         |                         |     |
| For combined bending about the $y$ - $y$ axis and compression, verify that:                                                                                                   |         |                         |     |
| $\frac{N_{\rm Ed}}{\chi_{\rm y} N_{\rm Rk} / \gamma_{\rm M1}} + k_{\rm yy} \frac{M_{\rm y.Ed} + \Delta M_{\rm y.Ed}}{\chi_{\rm LT} (M_{\rm y,Rk} / \gamma_{\rm M1})} \le 1.0$ |         | Based on<br>Eq (6.61)   |     |
| And                                                                                                                                                                           |         |                         |     |
| $\frac{N_{\rm Ed}}{\chi_{\rm z} N_{\rm Rk} / \gamma_{\rm M1}} + k_{\rm zy} \frac{M_{\rm y.Ed} + \Delta M_{\rm y.Ed}}{\chi_{\rm LT} (M_{\rm y,Rk} / \gamma_{\rm M1})} \le 1.0$ |         | Based on<br>Eq (6.62)   |     |
| where:                                                                                                                                                                        |         |                         |     |
| $\chi_y \& \chi_z$ are the reduction factors for flexural buckling about the m and minor axes                                                                                 | ajor    |                         |     |
| $\chi_{\rm LT}$ is the reduction factor for lateral-torsional buckling                                                                                                        |         |                         |     |
| $k_{yy}$ & $k_{zy}$ are the interaction factors                                                                                                                               |         |                         |     |
| For Class 3 cross sections:                                                                                                                                                   |         | Table 6.7               |     |
| $N_{\rm Rk}$ = $Af_{\rm y}$ = 8550 × 355 × 10 <sup>-3</sup> = 3035.3 kN                                                                                                       |         |                         |     |
| $M_{y,Rk}$ = $W_{el,y}f_y$ = 1300 × 10 <sup>3</sup> × 355 × 10 <sup>-6</sup> = 461.5 kNm                                                                                      |         |                         |     |
| $\Delta M_{\rm y,Ed} = 0.0 \ \rm kNm$                                                                                                                                         |         |                         |     |
| Reduction factor for flexural buckling                                                                                                                                        |         |                         |     |
| The flexural reduction factor is determined from:                                                                                                                             |         |                         |     |
| $\chi = \frac{1}{\left( \Phi + \sqrt{\left( \Phi^2 - \overline{\lambda}^2 \right)} \right)} \le 1.0$                                                                          |         | Eq (6.49)               |     |
| where                                                                                                                                                                         |         |                         |     |
| $arPsi = 0.5 + \left(1 + lpha \left(\overline{\lambda} - 0.2\right) + \overline{\lambda}^2\right)$                                                                            |         |                         |     |
| $\overline{\lambda}$ is the non-dimensional slenderness for flexural buckling                                                                                                 |         |                         |     |
| $\overline{\lambda} = \sqrt{\frac{Af_y}{N_{cr}}} = \left(\frac{L_{cr}}{i}\right) \left(\frac{1}{\lambda_1}\right)$ (For Class 1, 2 and 3 cross section                        | 15)     | 6.3.1.3(1)<br>Eq (6.50) |     |
| $\lambda_1 = 93.9\epsilon = 93.9 \times 0.81 = 76.06$                                                                                                                         |         |                         |     |
|                                                                                                                                                                               |         |                         |     |
|                                                                                                                                                                               |         |                         |     |
|                                                                                                                                                                               |         |                         |     |

| Example 12 - Major axis bending & compression of Class 3 section                                                                                                               | Sheet 7    | of 14      | Rev |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-----|
|                                                                                                                                                                                | Siloge /   |            |     |
| Buckling about the minor axis (z-z)                                                                                                                                            |            |            |     |
| $\overline{\lambda_{z}} = \left(\frac{L_{cr,z}}{i_{z}}\right) \left(\frac{1}{\lambda_{1}}\right) = \left(\frac{3000}{41.2}\right) \times \left(\frac{1}{76.06}\right) = 0.96$  |            | Eq (6.50)  |     |
| The appropriate buckling curve depends on $h/b$ :                                                                                                                              |            |            |     |
| $\frac{h}{b} = \frac{453.4}{189.9} = 2.39 > 1.2, t_{\rm f} = 12.7 \rm{mm} < 40 \rm{mm}$                                                                                        |            | Table 6.2  |     |
| Therefore, for S355, the buckling curve to consider for the z-z axis is 'b                                                                                                     | <i>,</i> ′ |            |     |
| For buckling curve 'b' $\alpha_z = 0.34$                                                                                                                                       |            | Table 6.1  |     |
| $\Phi_{z} = 0.5 \left[ 1 + \alpha \left( \overline{\lambda}_{z} - 0.2 \right) + \overline{\lambda}_{z}^{2} \right]$                                                            |            | 6.3.1.2(1) | )   |
| $= 0.5 \times \left[ 1 + 0.34 \times (0.96 - 0.2) + 0.96^{2} \right] = 1.09$                                                                                                   |            |            |     |
| $\chi_{z} = \frac{1}{(\Phi_{z} + \sqrt{(\Phi_{z}^{2} - \overline{\lambda}_{z}^{2})})} = \frac{1}{1.09 + \sqrt{(1.09^{2} - 0.96^{2})}} = 0.62$                                  |            | Eq (6.49)  |     |
| 0.62 < 1.0                                                                                                                                                                     |            |            |     |
| Therefore,                                                                                                                                                                     |            |            |     |
| $\chi_z = 0.62$                                                                                                                                                                |            |            |     |
| Buckling about the major axis (y-y)                                                                                                                                            |            |            |     |
| $\overline{\lambda_{y}} = \left(\frac{L_{cr,y}}{i_{y}}\right) \left(\frac{1}{\lambda_{1}}\right) = \left(\frac{6000}{185}\right) \times \left(\frac{1}{76.06}\right) = 0.43$   |            | Eq (6.50)  |     |
| The appropriate buckling curve depends on $h/b$ :                                                                                                                              |            |            |     |
| $\frac{h}{b} = \frac{453.4}{189.9} = 2.39 > 1.2, t_{\rm f} = 12.7 \rm{mm} < 40 \rm{mm}$                                                                                        |            | Table 6.2  |     |
| Therefore, for S355, the buckling curve to consider for the $y$ - $y$ axis is ' $c$                                                                                            | <i>a</i> ' |            |     |
| For buckling curve 'a' $\alpha_y = 0.21$                                                                                                                                       |            | Table 6.1  |     |
| $\Phi_{y} = 0.5 \left[ 1 + \alpha_{y} \left( \overline{\lambda}_{y} - 0.2 \right) + \overline{\lambda}_{y}^{2} \right]$                                                        |            | 6.3.1.2(1) | )   |
| $= 0.5 \times \left[ 1 + 0.21 \times (0.43 - 0.2) + 0.43^{2} \right] = 0.62$                                                                                                   |            |            |     |
| $\chi_{y} = \frac{1}{\left(\Phi_{y} + \sqrt{\left(\Phi_{y}^{2} - \overline{\lambda}_{y}^{2}\right)}\right)} = \frac{1}{0.62 + \sqrt{\left(0.62^{2} - 0.43^{2}\right)}} = 0.94$ |            | Eq (6.49)  |     |
| 0.94 < 1.0                                                                                                                                                                     |            |            |     |
| Therefore,                                                                                                                                                                     |            |            |     |
| $\chi_y = 0.94$                                                                                                                                                                |            |            |     |
|                                                                                                                                                                                |            |            |     |
|                                                                                                                                                                                |            |            |     |
|                                                                                                                                                                                |            |            |     |
|                                                                                                                                                                                |            |            |     |

| Example 12 - Major axis bending & compression of Class 3 section Sheet 8                                                                                                                                                    | of 14                   | Rev     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|
| Example 12 Major axis benching the compression of class 5 section Sheet of                                                                                                                                                  |                         | nev     |
| Reduction factor for lateral torsional buckling                                                                                                                                                                             |                         |         |
| As a UKB is being considered, the method given in 6.3.2.3 for determining the reduction factor for lateral-torsional buckling ( $\chi_{LT}$ ) for rolled sections is used.                                                  |                         |         |
| $\chi_{\mathrm{LT}} \frac{1}{\Phi_{\mathrm{LT}} + \sqrt{\Phi_{\mathrm{LT}}^2 - \beta \overline{\lambda}_{\mathrm{LT}}^2}}$ but $\leq 1.0$ and $\leq \frac{1}{\overline{\lambda}_{\mathrm{LT}}^2}$                           | 6.3.2.3(1)<br>Eq (6.57) | ·       |
| where:                                                                                                                                                                                                                      |                         |         |
| $\Phi_{\rm LT} = 0.5 \left[ 1 + \alpha_{\rm LT} \left( \overline{\lambda}_{\rm LT} - \overline{\lambda}_{\rm LT,0} \right) + \beta \overline{\lambda}_{\rm LT}^2 \right]$                                                   |                         |         |
| From the UK National Annex, $\overline{\lambda}_{LT,0} = 0.4$ and $\beta = 0.75$                                                                                                                                            | NA.2.17                 |         |
| The appropriate buckling curve depends on $h/b$ :                                                                                                                                                                           | NA.2.17                 |         |
| $\frac{h}{b} = \frac{453.4}{189.9} = 2.39$                                                                                                                                                                                  |                         |         |
| b 189.9<br>As 2 < 2.39 < 3.1 use buckling curve 'c'                                                                                                                                                                         |                         |         |
| For buckling curve 'c' $\alpha_{LT} = 0.49$                                                                                                                                                                                 | NA.2.16<br>Table 6.3    |         |
| $\overline{\lambda}_{LT} = \sqrt{\frac{W_{y}f_{y}}{M_{cr}}}$                                                                                                                                                                |                         |         |
| BS EN1993-1-1 does not give a method for determining the elastic critical moment for lateral-torsional buckling $(M_{\rm cr})$ . The approach given in SCI publication P362 is used to determine $\bar{\lambda}_{\rm LT}$ . |                         |         |
| It should be noted that the approach for determining $\overline{\lambda}_{LT}$ given in P362 is conservative, other approaches that may be used are:                                                                        |                         |         |
| • Determine M <sub>cr</sub> from either;                                                                                                                                                                                    |                         |         |
| - Hand calculations                                                                                                                                                                                                         |                         |         |
| – Software programmes e.g. ' <i>LTBeam</i> '                                                                                                                                                                                |                         |         |
| • Determine $\overline{\lambda}_{LT}$ using the more exact method, see Example 4.                                                                                                                                           |                         |         |
| Using the P362method:                                                                                                                                                                                                       |                         |         |
| Consider the span between lateral restraints.                                                                                                                                                                               |                         |         |
| ψ M                                                                                                                                                                                                                         |                         |         |
| M                                                                                                                                                                                                                           |                         |         |
| $\overline{\lambda}_{LT} = \frac{1}{\sqrt{C_1}} 0.9 \overline{\lambda}_z \sqrt{\beta}_w$                                                                                                                                    | P362 5.6                | .2.1(5) |
| Based on the bending moment diagram, $\psi = 0$ , therefore,                                                                                                                                                                |                         |         |
|                                                                                                                                                                                                                             |                         |         |
| $\frac{1}{\sqrt{C_1}} = 0.75$ $\overline{\lambda}_z = 0.96$                                                                                                                                                                 | P362 Tab                | ole 5.5 |
| $\overline{\lambda}_z = 0.96$                                                                                                                                                                                               | Sheet 4                 |         |
|                                                                                                                                                                                                                             |                         |         |

| Example 12 - Major axis bending & compression of Class 3 section                                                             | Sheet 9         | of 14      | Rev |
|------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|-----|
|                                                                                                                              | Sheet 7         | 01 14      | nev |
| For Class 3 cross sections                                                                                                   |                 |            |     |
| $\beta_{\rm w} = \frac{W_{\rm el,y}}{W_{\rm pl,y}} = \frac{1300}{1470} = 0.88$                                               |                 |            |     |
| $\overline{\lambda}_{LT} = 0.75 \times 0.9 \times 0.96 \times \sqrt{0.88} = 0.61$                                            |                 |            |     |
| $\Phi_{\rm LT} = 0.5 \left[ 1 + 0.49 \times (0.61 - 0.4) + (0.75 \times 0.61^2) \right] = 0.69$                              |                 | 6.3.2.3(1) | )   |
| $\chi_{\rm LT} = \frac{1}{0.69 + \sqrt{0.69^2 - (0.75 \times 0.61^2)}} = 0.88$                                               |                 | Eq (6.57)  |     |
| $\frac{1}{\overline{\lambda}_{LT}^2} = \frac{1}{0.61^2} = 2.69$                                                              |                 |            |     |
| 0.88 < 1.0 < 2.69                                                                                                            |                 |            |     |
| Therefore,                                                                                                                   |                 |            |     |
| $\chi_{\rm LT} = 0.88$                                                                                                       |                 |            |     |
| To account for the moment distribution, $\chi_{LT}$ may be modified as follows                                               | s:              | 6.3.2.3(2) | )   |
| $\chi_{\rm LT,mod} = \frac{\chi_{\rm LT}}{f}$ but $\chi_{\rm LT,mod} \le 1.0$                                                |                 | Eq (6.58)  |     |
| $F = 1 - 0.5 (1 - k_{\rm c}) \left[ 1 - 2 \left( \overline{\lambda}_{\rm LT} - 0.8 \right)^2 \right] \text{ but } f \le 1.0$ |                 | 6.3.2.3(2) | )   |
| $k_{\rm c} = \frac{1}{\sqrt{C_1}}$                                                                                           |                 | NA.2.18    |     |
| $\frac{1}{\sqrt{C_1}} = 0.75$                                                                                                |                 | Sheet 8    |     |
| $f = 1 - 0.5 \times (1 - 0.75) \times \left[1 - 2 \times (0.69 - 0.8)^2\right] = 0.88$                                       |                 | 6.3.2.3(2) | )   |
| Therefore,<br>$\chi_{LT,mod} = \frac{0.88}{0.88} = 1.0$                                                                      |                 | Eq (6.58)  |     |
| Interaction factors ( $C_{my}$ and $C_{mLT}$ )                                                                               |                 |            |     |
| Factor C <sub>my</sub>                                                                                                       |                 |            |     |
| $C_{\rm my}$ is determined from the bending moment diagram along the whole spitche beam.                                     | pan of          | Table B.3  | 5   |
| M <sub>h</sub>                                                                                                               | ⊬M <sub>h</sub> |            |     |
|                                                                                                                              |                 |            |     |
| - M <sub>S</sub>                                                                                                             |                 |            |     |
| Therefore for $C_{\rm my}$<br>$M_{\rm m} = 0  \rm kNm$                                                                       |                 |            |     |
| $M_{\rm h} = 0 \text{ kNm}$ $M_{\rm s} = 146 \text{ kNm}$                                                                    |                 |            |     |
|                                                                                                                              |                 |            |     |

| Example 12 - Major axis bending & compression of Class 3 section she                                                                                                                                                          | eet 10 | of 14     | Rev |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-----|
| As $M_{\rm h} < M_{\rm s}$                                                                                                                                                                                                    |        |           |     |
| $\alpha_{\rm h} = \frac{M_{\rm h}}{M_{\rm s}} = \frac{0}{146} = 0 \text{ and } \psi = 1.0$                                                                                                                                    |        |           |     |
| Therefore, as the moment is predominantly due to the concentrated load,                                                                                                                                                       |        |           |     |
| $C_{\rm my} = 0.9 + 0.1 \alpha_{\rm h}$                                                                                                                                                                                       |        |           |     |
| $C_{\rm my} = 0.9 + (0.1 \times 0) = 0.9$                                                                                                                                                                                     |        |           |     |
| Factor C <sub>mLT</sub>                                                                                                                                                                                                       |        |           |     |
| $C_{mLT}$ is determined from the bending moment diagram between the end of beam and the location of the secondary beam, as this beam restrains the primary beam against lateral torsional buckling at this point.             | the    | Table B.3 |     |
| <i>M</i> h - <i>M</i> <sub>S</sub>                                                                                                                                                                                            |        |           |     |
| Therefore for $C_{\rm mLT}$                                                                                                                                                                                                   |        |           |     |
| $M_{\rm h}$ = 146 kNm                                                                                                                                                                                                         |        |           |     |
| $M_{\rm s} = 79 \text{ kNm}$                                                                                                                                                                                                  |        |           |     |
| $\psi = 0$                                                                                                                                                                                                                    |        |           |     |
| As $M_{\rm h} > M_{\rm s}$                                                                                                                                                                                                    |        |           |     |
| $\alpha_{\rm s} = \frac{M_{\rm s}}{M_{\rm h}} = \frac{79}{146} = 0.54$                                                                                                                                                        |        |           |     |
| Therefore, as the moment is predominantly due to the concentrated load,                                                                                                                                                       |        |           |     |
| $C_{\rm mLT} = 0.2 + 0.8 \alpha_{\rm s} \ge 0.4$                                                                                                                                                                              |        |           |     |
| $C_{\text{mLT}} = 0.2 + (0.8 \times 0.54) = 0.63 > 0.4$                                                                                                                                                                       |        |           |     |
| Therefore,                                                                                                                                                                                                                    |        |           |     |
| $C_{\rm mLT} = 0.63$                                                                                                                                                                                                          |        |           |     |
| For members susceptible to torsional deformations, the expressions given in Table B.2 should be used to calculate the interaction factors.                                                                                    | in     |           |     |
| <i>k</i> <sub>yy</sub>                                                                                                                                                                                                        |        |           |     |
| Table B.2 refers to the expression given in Table B.1.                                                                                                                                                                        |        |           |     |
| For Class 3 and 4 sections.                                                                                                                                                                                                   |        |           |     |
| $k_{yy} = C_{my} \left\{ 1 + 0.6 \overline{\lambda}_{y} \left( \frac{N_{Ed}}{\chi_{y} N_{Rk} / \gamma_{M1}} \right) \right\} \le C_{my} \left\{ 1 + 0.6 \left( \frac{N_{Ed}}{\chi_{y} N_{Rk} / \gamma_{M1}} \right) \right\}$ | -      | Table B.1 |     |
| $0.9 \times \left\{ 1 + \left( 0.6 \times 0.43 \right) \times \left( \frac{1100}{\left( 0.94 \times 3035.3 / 1.0 \right)} \right) \right\} = 0.99$                                                                            |        |           |     |
|                                                                                                                                                                                                                               |        |           |     |
|                                                                                                                                                                                                                               |        |           |     |

| Example 12 - Major axis bending & compression of Class 3 section Sheet                                                                                                   | 11 of 14              | Rev |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----|
| $0.9 \times \left\{ 1 + 0.6 \times \left( \frac{1100}{(0.94 \times 3035.3/1.0)} \right) \right\} = 1.11$                                                                 |                       | 1   |
| 0.99 < 1.11                                                                                                                                                              |                       |     |
| Therefore,                                                                                                                                                               |                       |     |
| $k_{\rm yy} = 0.99$                                                                                                                                                      |                       |     |
| k <sub>zy</sub>                                                                                                                                                          |                       |     |
| For Class 3 and 4 sections.                                                                                                                                              |                       |     |
| $k_{zy} = 1 - \left\{ \left( \frac{0.05 \overline{\lambda}_z}{C_{mLT} - 0.25} \right) \left( \frac{N_{Ed}}{\chi_z \left( N_{Rk} / \gamma_{M1} \right)} \right) \right\}$ | Table B.2             | 2   |
| $\geq 1 - \left\{ \left( \frac{0.05}{C_{\text{mLT}} - 0.25} \right) \left( \frac{N_{\text{Ed}}}{\chi_{z} (N_{\text{Rk}} / \gamma_{\text{M1}})} \right) \right\}$         |                       |     |
| $1 - \left\{ \left( \frac{0.05 \times 0.96}{0.63 - 0.25} \right) \left( \frac{1100}{\left( 0.62 \times 3035.3/1.0 \right)} \right) \right\} = 0.93$                      |                       |     |
| $1 - \left\{ \left( \frac{0.05}{0.63 - 0.25} \right) \times \left( \frac{1100}{\left( 0.62 \times 3035.3/1.0 \right)} \right) \right\} = 0.92$                           |                       |     |
| 0.93 > 0.92                                                                                                                                                              |                       |     |
| Therefore,                                                                                                                                                               |                       |     |
| $k_{\rm zy} = 0.93$                                                                                                                                                      |                       |     |
| Verification                                                                                                                                                             |                       |     |
| $\frac{N_{\rm Ed}}{\chi_{\rm y}N_{\rm Rk}/\gamma_{\rm M1}} + k_{\rm yy}\frac{M_{\rm y.Ed} + \Delta M_{\rm y,Ed}}{\chi_{\rm LT}(M_{\rm y.Rk}/\gamma_{\rm M1})} \le 1.0$   | Based on<br>Eq (6.61) |     |
| And                                                                                                                                                                      |                       |     |
| $\frac{N_{\rm Ed}}{\chi_z N_{\rm Rk} / \gamma_{\rm M1}} + k_{\rm zy} \frac{M_{\rm y.Ed} + \Delta M_{\rm y,Ed}}{\chi_{\rm LT} (M_{\rm y.Rk} / \gamma_{\rm M1})} \le 1.0$  | Based on<br>Eq (6.62) |     |
| $M_{\rm y,Ed} = M_{\rm Ed} = 146 \rm kNm$                                                                                                                                | Sheet 2               |     |
| $\frac{1100}{(0.94 \times 3035.3/1.0)} + 0.99 \times \left(\frac{146}{(1.0 \times 461.5/1.0)}\right) = 0.70 < 1.0$                                                       | Based on<br>Eq (6.61) |     |
| $\frac{1100}{(0.62 \times 3035.3/1.0)} + 0.92 \times \left(\frac{146}{(1.0 \times 461.5/1.0)}\right) = 0.88 < 1.0$                                                       | Based on<br>Eq (6.62) |     |
| 0.70 < 1.0  and  0.88 < 1.0                                                                                                                                              |                       |     |
| Therefore, the bending and compression buckling resistance is adequate.                                                                                                  |                       |     |
|                                                                                                                                                                          |                       |     |
|                                                                                                                                                                          |                       |     |

| Example 12 - Major axis bending & compression of                                                                                                                                | Class 3 section              | Sheet 12 | of 14                   | Rev     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------|-------------------------|---------|
| 12.8 Blue Book Approach                                                                                                                                                         |                              |          | Page refe<br>given in S | Section |
| The design resistances may be obtained from SCI p                                                                                                                               | ublication P363.             |          | 12.8 are unless oth     |         |
| Consider the 457 $\times$ 191 $\times$ 67 UKB in S355 steel                                                                                                                     |                              |          | stated.                 | ierwise |
| 12.8.1 Design value of moments and forc                                                                                                                                         | es                           |          |                         |         |
| Design compression force                                                                                                                                                        | $N_{\rm Ed}$ = 1100          | kN       |                         |         |
| Maximum design bending moment (mid-span)                                                                                                                                        | $M_{\rm Ed} = 146.1$         | 0 kNm    |                         |         |
| Maximum design shear force                                                                                                                                                      | $V_{\rm Ed} = 51.40$         | kN       |                         |         |
| Design shear force at the mid-span (B)                                                                                                                                          | $V_{\rm B,Ed} = 46.00$       | kN       |                         |         |
| 12.8.2 Cross section classification                                                                                                                                             |                              |          |                         |         |
| $N_{\rm pl,Rd}$ = 3040 kN                                                                                                                                                       |                              |          | Page D-1                | 44      |
| $n = \frac{N_{\rm Ed}}{N_{\rm pl,Rd}}$                                                                                                                                          |                              |          |                         |         |
| Limiting value of $n$ for Class 2 sections is 0.139                                                                                                                             |                              |          | Page D-1                | 44      |
| Limiting value of $n$ for Class 3 sections is 0.569                                                                                                                             |                              |          |                         |         |
| $n = \frac{1100}{3040} = 0.36$                                                                                                                                                  |                              |          |                         |         |
| 0.139 < 0.36 < 0.569                                                                                                                                                            |                              |          |                         |         |
| Therefore, under combined bending and compression section is Class 3.                                                                                                           | on force $N_{\rm Ed} = 1100$ | 0 kN the |                         |         |
| 12.8.3 Cross -sectional resistance                                                                                                                                              |                              |          |                         |         |
| Shear resistance                                                                                                                                                                |                              |          |                         |         |
| $V_{\rm c,Rd}$ = 839 kN                                                                                                                                                         |                              |          | PageD-10                | )4      |
| $\frac{V_{\rm Ed}}{V_{\rm c,Rd}} = \frac{51.4}{839} = 0.06 < 1.0$                                                                                                               |                              |          |                         |         |
| <i>V</i> <sub>c,Rd</sub> 839                                                                                                                                                    |                              |          |                         |         |
| Therefore the shear resistance is adequate                                                                                                                                      |                              |          |                         |         |
| Combined bending, shear and compression res                                                                                                                                     | sistance                     |          |                         |         |
| $\frac{V_{\rm pl,Rd}}{2} = \frac{839}{2} = 419.5 \text{ kN}$                                                                                                                    |                              |          |                         |         |
| As $V_{\rm B,Ed} = 46.0 \text{ kN} < 419.5 \text{ kN}$ the effect of shear section to combined bending and compression does for, thus the requirement is simply to verify that: |                              |          |                         |         |
| $\frac{N_{\rm Ed}}{N_{\rm pl,Rd}} + \frac{M_{\rm y,Ed}}{M_{\rm c,y,Rd}} \le 1.0$                                                                                                |                              |          | Section 1               | 0.2.1   |
| $M_{\rm c,y,Rd} = 522 \text{ kNm}$                                                                                                                                              |                              |          | Page D-6                | 7       |
|                                                                                                                                                                                 |                              |          |                         |         |
|                                                                                                                                                                                 |                              |          |                         |         |
|                                                                                                                                                                                 |                              |          |                         |         |

| Example 12 - Major axis bending & compression of Class 3 section Sheet 13                                                       | 3 of 14 Rev          |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------|
| $\frac{N_{\rm Ed}}{N_{\rm pl,Rd}} + \frac{M_{\rm y,Ed}}{M_{\rm c,y,Rd}} = \frac{1100}{3040} + \frac{146}{522} = 0.64 < 1.0$     |                      |
| Therefore the resistance of the cross section to combined bending, shear and compression is adequate.                           |                      |
| 12.8.4 Buckling resistance to combined bending and compression                                                                  |                      |
| When both of the following criteria are satisfied:                                                                              |                      |
| • The cross section is Class 1, 2 or 3                                                                                          |                      |
| • $\gamma_{M1} = \gamma_{M0}$                                                                                                   |                      |
| The buckling verification given in 6.3.3 (Expressions 6.61 & 6.62) of BS EN 1993-1-1 may be simplified to:                      |                      |
| $\frac{N_{\rm Ed}}{N_{\rm b,y,Rd}} + k_{\rm yy} \frac{M_{\rm y.Ed}}{M_{\rm b,Rd}} \le 1.0 \qquad \text{(no minor axis moment)}$ |                      |
| $\frac{N_{\rm Ed}}{N_{\rm b,z,Rk}} + k_{\rm zy} \frac{M_{\rm y.Ed}}{M_{\rm b,Rk}} \le 1.0 \qquad \text{(no minor axis moment)}$ |                      |
| From earlier calculations<br>$k_{yy} = 0.99$<br>$k_{zy} = 0.93$                                                                 | Sheet 11<br>Sheet 11 |
| <b>Compression buckling resistance</b> $y$ - $y$ axis<br>For a buckling length of $L = 6$ m and $n = 0.36 < 0.569$              | Page D-145           |
| $N_{\rm b,y,Rd} = 2870 \text{ kNm}$                                                                                             |                      |
| Compression buckling resistance <i>z-z</i> axis                                                                                 | Page D-145           |
| For a buckling length of $L = 3$ m and $n = 0.36 < 0.569$                                                                       |                      |
| $N_{\rm b,z,Rd} = 1900 \ \rm kNm$                                                                                               |                      |
| Lateral torsional buckling resistance                                                                                           |                      |
| From Section 12.6 of this example                                                                                               |                      |
| $\frac{1}{\sqrt{C_1}} = 0.75$                                                                                                   | Sheet 8              |
| Therefore,                                                                                                                      |                      |
| $C_1 = \left(\frac{1}{0.75}\right)^2 = 1.78$                                                                                    |                      |
| For $C_1 = 1.78$ and $L = 3$ m                                                                                                  |                      |
| $M_{\rm b,Rd} = 507 \ \rm kNm$                                                                                                  | D-67                 |
|                                                                                                                                 |                      |
|                                                                                                                                 |                      |
|                                                                                                                                 |                      |

| Example 12 - Major axis bending & compression of Class 3 section Sheet 14                                                                                                                            | 14 | Rev |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| Verification                                                                                                                                                                                         |    |     |
| Resistance under combined bending and compression                                                                                                                                                    |    |     |
| $\left(\frac{1100}{2870}\right) + 0.99 \times \left(\frac{146}{507}\right) = 0.67 < 1.0$                                                                                                             |    |     |
| $\left(\frac{1100}{1900}\right) + 0.93 \times \left(\frac{146}{507}\right) = 0.85 < 1.0$                                                                                                             |    |     |
| Therefore, the buckling resistance is adequate.                                                                                                                                                      |    |     |
| Note: The Blue book approach gives better utilization values than those on Sheet 11 (0.70 and 0.88), due to the conservative method used to determine $\chi_{LT}$ in Section 12.7.2 of this example. |    |     |
|                                                                                                                                                                                                      |    |     |
|                                                                                                                                                                                                      |    |     |
|                                                                                                                                                                                                      |    |     |
|                                                                                                                                                                                                      |    |     |
|                                                                                                                                                                                                      |    |     |
|                                                                                                                                                                                                      |    |     |
|                                                                                                                                                                                                      |    |     |
|                                                                                                                                                                                                      |    |     |
|                                                                                                                                                                                                      |    |     |
|                                                                                                                                                                                                      |    |     |
|                                                                                                                                                                                                      |    |     |
|                                                                                                                                                                                                      |    |     |
|                                                                                                                                                                                                      |    |     |

|                                                                                                                                                                                 | Job No.          | CDS164           |                                      | Sheet 1    | of 1                                        | 1                              | Rev                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|--------------------------------------|------------|---------------------------------------------|--------------------------------|------------------------------------------------------|
|                                                                                                                                                                                 | Job Title        | Worked exam      | mples to the                         | Eurocode   | es with                                     | UK                             | NA                                                   |
| Sci<br>Silwood Park, Ascot, Berks SL5 7QN<br>Telephone: (01344) 636525                                                                                                          | Subject          | Example 13       | - Column i                           | n simple c | construc                                    | tion                           |                                                      |
| Fax: (01344) 636570                                                                                                                                                             | Client           | SCI              | Made by                              | MEB        | Date                                        | Feb                            | 2009                                                 |
| CALCULATION SHEET                                                                                                                                                               |                  | 501              | Checked by                           | DGB        | Date                                        | Jul 2                          | .009                                                 |
| <ul> <li>13 Column in sim</li> <li>13.1 Scope</li> <li>Design the column shown in Figure<br/>The following assumptions may be a</li> <li>The column is continuous ar</li> </ul> | 13.1 in<br>made: | S275 steel bet   | ween levels                          |            | BS EI<br>2005,<br>Natio<br>unles.<br>statea | N 19<br>incl<br>nal A<br>s oth | s are to<br>93-1-1:<br>uding its<br>Annex,<br>erwise |
| construction.                                                                                                                                                                   | iu iorina        | puit of u        | Structure                            | or simple  |                                             |                                |                                                      |
| • The column is nominally pinned                                                                                                                                                | at the ba        | ase.             |                                      |            |                                             |                                |                                                      |
| • Beams are connected to the colu                                                                                                                                               | mn flang         | ge by flexible o | end plates.                          |            |                                             |                                |                                                      |
|                                                                                                                                                                                 |                  |                  | F <sub>1,d</sub><br>F <sub>3,d</sub> |            |                                             |                                |                                                      |
|                                                                                                                                                                                 |                  |                  |                                      |            |                                             |                                |                                                      |
| Figure 13.1                                                                                                                                                                     |                  |                  |                                      |            |                                             |                                |                                                      |
| <ul><li>The design aspects covered in this e</li><li>Cross section classification</li></ul>                                                                                     | example a        | are:             |                                      |            |                                             |                                |                                                      |
| <ul> <li>Simplified interaction criteria for<br/>bending as given in the Access \$</li> </ul>                                                                                   |                  |                  |                                      | d bi-axial |                                             |                                |                                                      |

| Example 13 - Column in simple construction                                                                                                                                                                               | Sheet 2  | of 11                  | Rev |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------|-----|
| 13.2 Design values of combined actions at<br>ultimate limit state                                                                                                                                                        |          |                        |     |
| Reaction from beam 1 $F_{1,d} = 37 \text{ kN}$ Reaction from beam 2 $F_{2,d} = 147 \text{ kN}$ Reaction from beam 3 $F_{3,d} = 28 \text{ kN}$                                                                            |          |                        |     |
| Design compression in column between levels 2 and 3<br>$N_{2-3,Ed} = 377 \text{ kN}$                                                                                                                                     |          |                        |     |
| 13.2.1 Design compression force in column1-2                                                                                                                                                                             |          |                        |     |
| The total compression force in the column between levels 1 and 2 is:                                                                                                                                                     |          |                        |     |
| $N_{\rm Ed} = N_{2-3,\rm Ed} + F_{1,\rm d} + F_{2,\rm d} + F_{3,\rm d} = 377 + 37 + 147 + 28 = 589 \rm kN$                                                                                                               | Γ        |                        |     |
| 13.2.2 Design bending moments in column 1-2 due to eccentricities                                                                                                                                                        |          |                        |     |
| For columns in simple construction, the beam reactions are assumed to distance of 100 mm from the face of the column.                                                                                                    | act at a | Access-ste<br>document |     |
| For a $203 \times 203 \times 46$ UKC.                                                                                                                                                                                    |          |                        |     |
| The bending moments at level 2 are:                                                                                                                                                                                      |          |                        |     |
| $M_{2,y,Ed} = F_{2,d}\left(\frac{h}{2} + 100\right) = 147 \times \left(\frac{203.2}{2} + 100\right) \times 10^{-3} = 29.64$                                                                                              | kNm      |                        |     |
| $M_{2,z,Ed} = \left(F_{1,d} - F_{3,d}\right) \left(\frac{t_w}{2} + 100\right) = (37 - 28) \times \left(\frac{7.2}{2} + 100\right) \times 10^{-3}$                                                                        |          |                        |     |
| = 0.93  kNm                                                                                                                                                                                                              |          |                        |     |
| These bending moments are distributed between the column lengths abo<br>below level 2 in proportion to their bending stiffness. Therefore the de<br>bending moments acting on the column length between levels 1 and 2 a | esign    |                        |     |
| y-y axis $M_{y,Ed} = 29.64 \times \frac{3}{8} = 11.11 \text{ kNm}$                                                                                                                                                       |          |                        |     |
| z-z axis $M_{z,Ed} = 0.93 \times \frac{3}{8} = 0.35$ kNm                                                                                                                                                                 |          |                        |     |
| There are no moments at level 1.                                                                                                                                                                                         |          |                        |     |
|                                                                                                                                                                                                                          |          |                        |     |
|                                                                                                                                                                                                                          |          |                        |     |
|                                                                                                                                                                                                                          |          |                        |     |
|                                                                                                                                                                                                                          |          |                        |     |
|                                                                                                                                                                                                                          |          |                        |     |
|                                                                                                                                                                                                                          |          |                        |     |
|                                                                                                                                                                                                                          |          |                        |     |

| Example 13 - Column in simple constr                                                                                                                     | uction St                         | neet 3 | of 11               | Rev    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------|---------------------|--------|
| 13.3 Section properties                                                                                                                                  |                                   |        |                     |        |
| For a 203 × 203 × 46 UKC in S275 s                                                                                                                       | teel                              |        |                     |        |
| From section property tables:                                                                                                                            |                                   |        | P363                |        |
| Depth                                                                                                                                                    | h = 203.2  mm                     |        |                     |        |
| Width                                                                                                                                                    | b = 203.6  mm                     |        |                     |        |
| Web thickness                                                                                                                                            | $t_{\rm w} = 7.2 {\rm mm}$        |        |                     |        |
| Flange thickness                                                                                                                                         | $t_{\rm f} = 11.0 \ {\rm mm}$     |        |                     |        |
| Root radius                                                                                                                                              | r = 10.2  mm                      |        |                     |        |
| Depth between fillets                                                                                                                                    | d = 160.8  mm                     |        |                     |        |
| Second moment of area z-z axis                                                                                                                           | $I_z = 1 550 \text{ cm}^4$        |        |                     |        |
| Radius of gyration y-y axis                                                                                                                              | $i_{\rm y} = 8.82 {\rm cm}$       |        |                     |        |
| Radius of gyration z-z axis                                                                                                                              | $i_z = 5.13 \text{ cm}$           |        |                     |        |
| Plastic modulus y-y axis                                                                                                                                 | $W_{\rm pl,y} = 497 \ {\rm cm}^3$ |        |                     |        |
| Plastic modulus z-z axis                                                                                                                                 | $W_{\rm pl,z} = 231 \ {\rm cm}^3$ |        |                     |        |
| Warping constant                                                                                                                                         | $I_{\rm w} = 0.143 \ {\rm dm}^6$  |        |                     |        |
| St Venant torsional constant                                                                                                                             | $I_{\rm T} = 22.2 \ {\rm cm}^4$   |        |                     |        |
| Area                                                                                                                                                     | $A = 58.7 \text{ cm}^2$           |        |                     |        |
| Modulus of elasticity                                                                                                                                    | $E = 210\ 000\ \text{N/mm}^2$     |        | 3.2.6(1)            |        |
| Shear modulus                                                                                                                                            | $G \approx 81000 \text{ N/mm}^2$  |        | 5.2.0(1)            |        |
| Shear modulus                                                                                                                                            | $G \approx 81000$ N/IIIII         |        |                     |        |
| obtained from the product standard. Non-<br>nominal value should be used.<br>For S275 steel and $t \le 16$ mm<br>Yield strength $f_v = R_{eH} = 275$ N/m |                                   |        | BS EN 10<br>Table 7 | 0025-2 |
| <b>13.4 Partial factors for r</b><br>$\gamma_{M0} = 1.0$<br>$\gamma_{M1} = 1.0$                                                                          |                                   |        | NA.2.15             |        |
| <b>13.5 Cross section class</b> $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$                                                   | sification                        |        | Table 5.2           |        |
| Outstand of compression flange                                                                                                                           |                                   |        |                     |        |
| $b - t_{m} - 2r = 203.6 - 7.2$                                                                                                                           | $-(2 \times 10.2)$                |        |                     |        |
| $c = \frac{b - t_{w} - 2r}{2} = \frac{203.6 - 7.2}{2}$                                                                                                   | = 88.0  mm                        |        |                     |        |
| $c = \frac{88}{-80}$                                                                                                                                     |                                   |        |                     |        |
| $\frac{c}{t_{\rm f}} = \frac{88}{11} = 8.0$                                                                                                              |                                   |        | Table 5.2           |        |
|                                                                                                                                                          |                                   |        |                     |        |
|                                                                                                                                                          |                                   |        |                     |        |
|                                                                                                                                                          |                                   |        |                     |        |

| Example 13 - Column in simple construction s                                                                                                                                                                                              | heet 4 | of 11      | Rev      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|----------|
| The limiting value for Class 1 is $\frac{c}{-1} \le 9\varepsilon = 9 \times 0.92 = 8.28$                                                                                                                                                  |        |            | <u> </u> |
| t <sub>f</sub>                                                                                                                                                                                                                            |        |            |          |
| 8.0 < 8.28                                                                                                                                                                                                                                |        |            |          |
| Therefore the flange in compression is Class 1                                                                                                                                                                                            |        |            |          |
| Web subject to bending and compression                                                                                                                                                                                                    |        | Table 5.2  |          |
| c = d = 160.8  mm                                                                                                                                                                                                                         |        | Table 5.2  |          |
| $\frac{c}{t_{\rm w}} = \frac{160.8}{7.2} = 22.3$                                                                                                                                                                                          |        |            |          |
| For plastic stress distributions,                                                                                                                                                                                                         |        |            |          |
| $\alpha = 0.5 \left[ 1 + \left( \frac{N_{\rm Ed}}{f_{\rm y} t_{\rm w} d} \right) \right] = 0.5 \times \left[ 1 + \left( \frac{589 \times 10^3}{275 \times 7.2 \times 160.8} \right) \right] = 1$                                          | 1.4    | P362 Tab   | le5.1    |
| but $-1 < \alpha \leq 1$                                                                                                                                                                                                                  |        |            |          |
| Therefore $\alpha = 1.0$                                                                                                                                                                                                                  |        |            |          |
| As $\alpha > 0.5$ the limiting value for Class 1 is<br>$\frac{c}{t_{w}} \le \frac{396 \varepsilon}{13 \alpha - 1} = \frac{396 \times 0.92}{(13 \times 1) - 1} = 30.4$ $22.3 < 30.4$                                                       |        |            |          |
| Therefore the web is Class 1 under bending and $N_{\rm Ed} = 589$ kN                                                                                                                                                                      |        |            |          |
| Therefore the cross-section is Class 1 under bending and $N_{\rm Ed} = 589$ kN.                                                                                                                                                           |        |            |          |
|                                                                                                                                                                                                                                           |        |            |          |
| 13.6 Simplified interaction criterion                                                                                                                                                                                                     |        |            |          |
| 6.3.3(4) of BS EN 1993-1-1 gives two expressions that should be satisfie members with combined bending and compression (see Example 11).                                                                                                  | d for  |            |          |
| However, for columns in simple construction, the two expressions may b                                                                                                                                                                    | e      | Access-ste | eel      |
| replaced by a single expression $\frac{N_{\rm Ed}}{N_{\rm min,b,Rd}} + \frac{M_{\rm y,Ed}}{M_{\rm y,b,Rd}} + 1.5 \frac{M_{\rm z,Ed}}{M_{\rm z,cb,Rd}} \le 1.0$ w                                                                          | vhen   | document   | SN048    |
| the following criteria are satisfied:                                                                                                                                                                                                     |        |            |          |
| • The column is a hot rolled I or H section, or an RHS                                                                                                                                                                                    |        |            |          |
| • The cross section is class 1, 2 or 3 under compression                                                                                                                                                                                  |        |            |          |
| • The bending moment diagrams about each axis are linear                                                                                                                                                                                  |        |            |          |
| • The column is restrained laterally in both the <i>y</i> - <i>y</i> and <i>z</i> - <i>z</i> directions at floor level, but is unrestrained between the floors                                                                            | t each |            |          |
| <ul> <li>The bending moment ratios (\u03c6) as defined in Table B.3 in BS EN 19         <ol> <li>are less than the values given in Tables 2.1 or 2.2 in the Access-stee             document SN048.             Or</li> </ol> </li> </ul> |        |            |          |
| In the case where a column base is nominally pinned (i.e. $\psi_y = 0$ and                                                                                                                                                                | d      |            |          |
| $\psi_z = 0$ ) the axial force ratio must satisfy the following criterion:                                                                                                                                                                |        |            |          |
|                                                                                                                                                                                                                                           |        |            |          |

| Example 13 - Column in simple construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sheet 5 | of 11     | Rev       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-----------|
| $\frac{N_{\rm Ed}}{N_{\rm y,b,Rd}} \le 0.83 \text{ (note to Table 2.1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |           |           |
| Here the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |           |           |
| • The section is Class 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |           |           |
| • The bending moment ratios are $\psi_y = 0$ and $\psi_z = 0$ , as the base of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the     |           |           |
| column is nominally pinned (see Figure 13.2). Therefore determine axial force ratio.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the     |           |           |
| $ \begin{array}{c cccc}  & M_{y,Ed} & M_{z,Ed} \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\$ |         |           |           |
| Figure 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |           |
| Axial force ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |           |           |
| $N_{\rm y,b,Rd} = \frac{\chi_{\rm y} A f_{\rm y}}{\gamma_{\rm M1}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |           |           |
| Determine the flexural buckling reduction factor $\chi_y$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |           |
| $\chi = \frac{1}{(\Phi + \sqrt{(\Phi^2 - \overline{\lambda}^2)})} \le 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | Eq (6.49) | )         |
| Where:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |           |           |
| $\Phi = 0.5 + \left[1 + \alpha \left(\overline{\lambda} - 0.2\right) + \overline{\lambda}^{2}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |           |           |
| $\overline{\lambda} = \sqrt{\frac{Af_y}{N_{cr}}} = \frac{L_{cr}}{i} \times \frac{1}{\lambda_1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 6.3.1.3 E | Eq (6.50) |
| $\lambda_1 = 93.9\varepsilon = 93.9 \times 0.92 = 86.39$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |           |           |
| The buckling length may be taken as:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |           |           |
| About the major $(y-y)$ axis $L_{cr} = L = 5000 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |           |
| $\overline{\lambda}_{y} = \left(\frac{L_{cr}}{i_{y}}\right) \left(\frac{1}{\lambda_{1}}\right) = \left(\frac{5000}{88.2}\right) \times \left(\frac{1}{86.39}\right) = 0.66$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Eq (6.50) | )         |
| The appropriate buckling curve depends on $h/b$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |           |           |
| $\frac{h}{b} = \frac{203.2}{203.6} = 1.0 < 1.2, t_{\rm f} = 11.0 \text{ mm} < 100 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | Table 6.2 | 2         |

| Example 13 - Column in simple construction                                                                                                                                  | Sheet 6 | of 11      | Rev   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|-------|
| Therefore, for S275, the buckling curve to consider for the major $(y-y)$ is 'b'                                                                                            | axis    |            |       |
| For buckling curve 'b' $\alpha_y = 0.34$                                                                                                                                    |         | Table 6.1  |       |
| $\Phi_{\rm y} = 0.5 \left[ 1 + \alpha \left( \overline{\lambda}_{\rm y} - 0.2 \right) + \overline{\lambda}_{\rm y}^2 \right]$                                               |         | 6.3.1.2(1) | )     |
| $= 0.5 \times \left[ 1 + 0.34 \times (0.66 - 0.2) + 0.66^2 \right] = 0.80$                                                                                                  |         |            |       |
| $\chi_{y} = \frac{1}{(\Phi_{y} + \sqrt{(\Phi_{y}^{2} - \overline{\lambda}_{y}^{2})})} = \frac{1}{0.8 + \sqrt{(0.8^{2} - 0.66^{2})}} = 0.80$                                 |         | Eq (6.49)  |       |
| 0.80 < 1.0                                                                                                                                                                  |         |            |       |
| Therefore,                                                                                                                                                                  |         |            |       |
| $\chi_y = 0.80$                                                                                                                                                             |         |            |       |
| $N_{y,b,Rd} = \frac{\chi_y A f_y}{\gamma_{M1}} = \frac{0.8 \times 5870 \times 275}{1.0} \times 10^{-3} = 1291 \text{ kN}$                                                   |         | Eq (6.47)  |       |
| $\frac{N_{\rm Ed}}{N_{\rm y,b,Rd}} = \frac{589}{1291} = 0.46$                                                                                                               |         |            |       |
| 0.46 < 0.83                                                                                                                                                                 |         |            |       |
| Therefore all the criteria given above are met, so the simplified express<br>may be used for this example.                                                                  | sion    |            |       |
| The criterion to verify is:                                                                                                                                                 |         | Access-ste | eel   |
| $\frac{N_{\rm Ed}}{N_{\rm min,b,Rd}} + \frac{M_{\rm y,Ed}}{M_{\rm y,b,Rd}} + 1.5 \frac{M_{\rm z,Ed}}{M_{\rm z,cb,Rd}} \le 1.0$                                              |         | document   | SN048 |
| where:                                                                                                                                                                      |         |            |       |
| $N_{\min,b,Rd}$ is the lesser of $\frac{\chi_y A f_y}{\gamma_{M1}}$ and $\frac{\chi_z A f_y}{\gamma_{M1}}$ .                                                                |         |            |       |
| $M_{\rm y,b,Rd} = \chi_{\rm LT} \frac{f_{\rm y} W_{\rm pl,y}}{\gamma_{\rm M1}}$                                                                                             |         |            |       |
| $M_{ m z,cb,Rd} = rac{f_{ m y} W_{ m pl,z}}{\gamma_{ m M1}}$                                                                                                               |         |            |       |
| Determine N <sub>min,b,Rd</sub>                                                                                                                                             |         |            |       |
| $N_{\rm y,b,Rd} = 1291 \text{ kN}$                                                                                                                                          |         | Sheet 6    |       |
| Determine N <sub>z,b,Rd</sub>                                                                                                                                               |         |            |       |
| The buckling length may be taken as:                                                                                                                                        |         |            |       |
| About the major (z-z) axis $L_{cr} = L = 5000 \text{ mm}$                                                                                                                   |         |            |       |
| $\overline{\lambda}_{z} = \left(\frac{L_{cr}}{i_{z}}\right) \left(\frac{1}{\lambda_{1}}\right) = \left(\frac{5000}{51.3}\right) \times \left(\frac{1}{86.39}\right) = 1.13$ |         | Eq (6.50)  |       |
|                                                                                                                                                                             |         |            |       |

| Example 13 - Column in simple construction                                                                                                                                                                        | Sheet 7 | of 11                               | Rev |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------|-----|
| The appropriate buckling curve depends on $h/b$ :<br>h = 203.2                                                                                                                                                    |         | Table 6.2                           | •   |
| $\frac{h}{b} = \frac{203.2}{203.6} = 1.0 < 1.2, t_{\rm f} = 11.0 \text{ mm} < 100 \text{ mm}$                                                                                                                     |         |                                     |     |
| Therefore, for S275, the buckling curve to consider for the minor $(z-z)$ is 'c'                                                                                                                                  | axis    |                                     |     |
| For buckling curve 'c' $\alpha_z = 0.49$                                                                                                                                                                          |         | Table 6.1                           |     |
| $\Phi_{z} = 0.5 \left[ 1 + \alpha \left( \overline{\lambda}_{z} - 0.2 \right) + \overline{\lambda}_{z}^{2} \right]$                                                                                               |         | 6.3.1.2(1)                          | )   |
| $= 0.5 \times \left[ 1 + 0.49 \times (1.13 - 0.2) + 1.13^{2} \right] = 1.37$                                                                                                                                      |         |                                     |     |
| $\chi_{z} = \frac{1}{(\Phi_{z} + \sqrt{(\Phi_{z}^{2} - \overline{\lambda}_{z}^{2})})} = \frac{1}{1.37 + \sqrt{(1.37^{2} - 1.13^{2})}} = 0.47$                                                                     |         | Eq (6.49)                           |     |
| 0.47 < 1.0                                                                                                                                                                                                        |         |                                     |     |
| Therefore,                                                                                                                                                                                                        |         |                                     |     |
| $\chi_z = 0.47$                                                                                                                                                                                                   |         |                                     |     |
| $N_{z,b,Rd} = \frac{\chi_z A f_y}{\gamma_{M1}} = \frac{0.47 \times 5870 \times 275}{1.0} \times 10^{-3} = 759 \text{ kN}$                                                                                         |         | Eq (6.47)                           |     |
| 759  kN < 1291  kN                                                                                                                                                                                                |         |                                     |     |
| Therefore,                                                                                                                                                                                                        |         |                                     |     |
| $N_{\min,b,Rd} = 759 \text{ kN}$                                                                                                                                                                                  |         |                                     |     |
| Determine M <sub>y,b,Rd</sub>                                                                                                                                                                                     |         |                                     |     |
| As a UKC is being considered, the method given in 6.3.2.3 for determine the reduction factor for lateral-torsional buckling ( $\chi_{LT}$ ) of rolled sections used.                                              | -       |                                     |     |
| $\chi_{\rm LT} \frac{1}{\varphi_{\rm LT} + \sqrt{\varphi_{\rm LT}^2 - \beta \overline{\lambda}_{\rm LT}^2}}$ but $\leq 1.0$ and $\leq \frac{1}{\overline{\lambda}_{\rm LT}^2}$                                    |         | BS EN 19<br>6.3.2.3(1)<br>Eq (6.57) | )   |
| where:                                                                                                                                                                                                            |         |                                     |     |
| $\boldsymbol{\Phi}_{\mathrm{LT}} = 0.5 \left[ 1 + \alpha_{\mathrm{LT}} \left( \overline{\lambda}_{\mathrm{LT}} - \overline{\lambda}_{\mathrm{LT},0} \right) + \beta \overline{\lambda}_{\mathrm{LT}}^{2} \right]$ |         |                                     |     |
| From the UK National Annex $\overline{\lambda}_{LT,0} = 0.4$ and $\beta = 0.75$                                                                                                                                   |         | NA.2.17                             |     |
| The appropriate buckling curve depends on $h/b$ :                                                                                                                                                                 |         | NA.2.17                             |     |
| $\frac{h}{2} = \frac{203.2}{2} = 1.0 < 2$                                                                                                                                                                         |         |                                     |     |
| b 203.6<br>Therefore the buckling curve to consider is 'b'<br>For curve buckling 'b' $\alpha_{LT} = 0.34$                                                                                                         |         | NA2.16 &<br>Table 6.3               |     |
| $\overline{\lambda}_{\rm LT} = \sqrt{\frac{W_{\rm y}f_{\rm y}}{M_{\rm cr}}}$                                                                                                                                      |         | BS EN 19<br>6.3.2.2(1)              |     |
|                                                                                                                                                                                                                   |         |                                     |     |

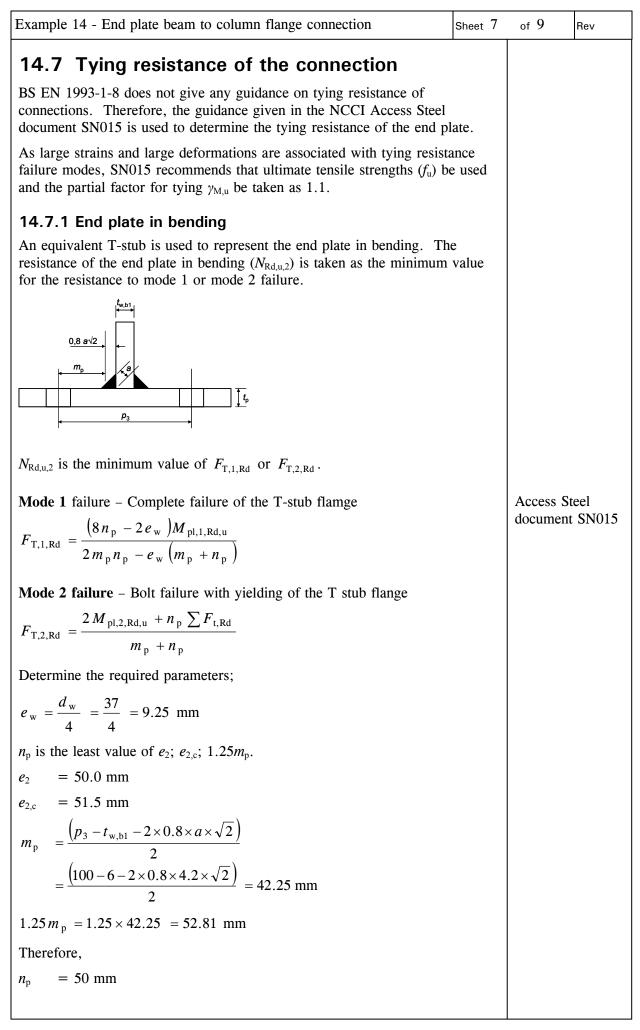
| Example 13 - Column in simple construction                                                                                                                                                                           | Sheet 8 | of 11                 | Rev |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|-----|
| where:                                                                                                                                                                                                               |         |                       |     |
| $W_{\rm y} = W_{\rm pl,y}$ for Class 1 or 2 sections                                                                                                                                                                 |         |                       |     |
| $M_{\rm cr}$ is the elastic critical buckling moment.                                                                                                                                                                |         |                       |     |
| For doubly symmetrical sections with 'normal support' conditions at the of the member and a linear bending moment diagram $M_{cr}$ may be determined from:                                                           |         |                       |     |
| $M_{\rm cr} = C_1 \frac{\pi^2 E I_z}{L^2} \sqrt{\frac{I_{\rm w}}{I_z} + \frac{L^2 G I_{\rm T}}{\pi^2 E I_z}}$                                                                                                        |         | Access-st<br>document |     |
| where:                                                                                                                                                                                                               |         |                       |     |
| <i>L</i> is the element length between points of lateral restraint<br>= $5000 \text{ mm}$                                                                                                                            |         |                       |     |
| $C_1$ is a coefficient depending on the section properties, support conditions and the shape of the bending moment diagram.                                                                                          |         |                       |     |
| For the bending moment diagram shown in Figure 13.2,<br>$C_1 = 1.77$                                                                                                                                                 |         | Access-st<br>SN003 T  |     |
| Therefore,                                                                                                                                                                                                           |         |                       |     |
| $M_{\rm cr} = \left\{ 1.77 \left( \frac{\pi^2 \times 210 \times 10^3 \times 1550 \times 10^4}{5000^2} \right) \times \right.$                                                                                        |         |                       |     |
| $\sqrt{\frac{1.43 \times 10^{11}}{1550 \times 10^4} + \frac{5000^2 \times 81 \times 10^3 \times 22.2 \times 10^4}{\pi^2 \times 210 \times 10^3 \times 1550 \times 10^4}} \right\} \times 10^{-6} = 345.7 \text{ kN}$ | Jm      |                       |     |
| And                                                                                                                                                                                                                  |         |                       |     |
| $\overline{\lambda}_{LT} = \sqrt{\frac{497 \times 10^3 \times 275}{345.7 \times 10^6}} = 0.63$                                                                                                                       |         |                       |     |
| $     \Phi_{\rm LT} = 0.5 \times \left[ 1 + 0.34 \times \left( 0.63 - 0.4 \right) + \left( 0.75 \times 0.63^2 \right) \right] = 0.69 $                                                                               |         | BS EN 1<br>6.3.2.3(1  |     |
| $\chi_{\rm LT} = \frac{1}{0.69 + \sqrt{0.69^2 - (0.75 \times 0.63^2)}} = 0.90$                                                                                                                                       |         | BS EN 1<br>Eq (6.57)  |     |
| $\frac{1}{\overline{\lambda}_{\rm LT}^2} = \frac{1}{0.63^2} = 2.52$                                                                                                                                                  |         |                       |     |
| 0.90 < 1.0 < 2.52                                                                                                                                                                                                    |         |                       |     |
| Therefore                                                                                                                                                                                                            |         |                       |     |
| $\chi_{\rm LT} = 0.90$                                                                                                                                                                                               |         |                       |     |
| To account for the bending moment distribution, $\chi_{LT}$ may be modified a follows:                                                                                                                               | as      |                       |     |
| $\chi_{\rm LT,mod} = \frac{\chi_{\rm LT}}{f}$ but $\chi_{\rm LT,mod} \le 1.0$                                                                                                                                        |         |                       |     |
|                                                                                                                                                                                                                      |         |                       |     |

| Example 13 - Column in simple construction                                                                                     | Sheet 9 | of 11                              | Rev   |
|--------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------|-------|
| $f = 1 - 0.5 (1 - k_c) \left[ 1 - 2 (\overline{\lambda}_{LT} - 0.8)^2 \right] \text{ but } f \le 1.0$                          |         | BS EN 19<br>6.3.2.3(2)             |       |
| $k_{\rm c} = \frac{1}{\sqrt{C_1}}$                                                                                             |         | NA.2.18                            |       |
| For the bending moment diagram given in Figure 13.2<br>$\psi = 0.0$                                                            |         | Access St<br>document<br>Table 2.1 |       |
| Therefore<br>$\frac{1}{\sqrt{C_1}} = 0.75$                                                                                     |         |                                    |       |
| Thus, $k_c = 0.75$<br>$f = 1 - 0.5 \times (1 - 0.75) \times \left[ 1 - 2 \times (0.63 - 0.8)^2 \right] = 0.88$                 |         |                                    |       |
| Therefore,                                                                                                                     |         | BS EN 19<br>Eq (6.58)              |       |
| $\chi_{\rm LT,mod} = \frac{0.90}{0.88} = 1.02$<br>As                                                                           |         |                                    |       |
| 1.02 > 1.0                                                                                                                     |         |                                    |       |
| $\chi_{\text{LT,mod}} = 1.0$ $M_{\text{y,b,Rd}} = \frac{\chi_{\text{LT}} W_{\text{pl,y}} f_{\text{y}}}{\gamma_{\text{M0}}}$    |         | Access-ste                         |       |
|                                                                                                                                |         | document                           | SN048 |
| where, $\chi_{LT} = \chi_{LT,mod}$                                                                                             |         |                                    |       |
| Therefore,<br>$M_{y,b,Rd} = 1.0 \times \frac{497 \times 10^3 \times 275}{1.0} \times 10^{-6} = 137 \text{ kNm}$                |         |                                    |       |
| Determine <i>M</i> <sub>z,cb,Rd</sub>                                                                                          |         |                                    |       |
| $M_{z,cb,Rd} = \frac{W_{pl,z} f_y}{\gamma_{M1}} = \frac{231 \times 10^3 \times 275}{1.0} \times 10^{-6} = 64 \text{ kNm}$      |         | Access-ste<br>document             |       |
| Verification                                                                                                                   |         |                                    |       |
| $\frac{N_{\rm Ed}}{N_{\rm min,b,Rd}} + \frac{M_{\rm y,Ed}}{M_{\rm y,b,Rd}} + 1.5 \frac{M_{\rm z,Ed}}{M_{\rm z,cb,Rd}} \le 1.0$ |         |                                    |       |
| $\frac{589}{759} + \frac{11.11}{137} + 1.5 \times \left(\frac{0.35}{64}\right) = 0.87 < 1.0$                                   |         |                                    |       |
| Therefore, the resistance of the member is adequate.                                                                           |         |                                    |       |
|                                                                                                                                |         |                                    |       |
|                                                                                                                                |         |                                    |       |
|                                                                                                                                |         |                                    |       |

| Example 13 - Column in simple construction                                                                                                                                                                                                                       | Sheet 1           | 10 of 11                                            | Rev                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------|---------------------|
| <b>13.7 Blue Book Approach</b><br>The design resistances may be obtained from SCI publication P363.<br>Consider the $203 \times 203 \times 46$ UKC in S275 steel                                                                                                 | Section<br>to P36 | eferences in<br>13.7 are<br>3 unless<br>ise stated. |                     |
| 13.7.1 Design value of bending moments and compression forces                                                                                                                                                                                                    | 1                 |                                                     |                     |
| Design compression force $N_{\rm Ed} = 589  \rm kN$                                                                                                                                                                                                              |                   | Sheet 2                                             | 2                   |
| Design bending moment about the y-y axis $M_{y,Ed} = 11.11$ kNm                                                                                                                                                                                                  |                   |                                                     |                     |
| Design bending moment about the z-z axis $M_{z,Ed} = 0.35$ kNm                                                                                                                                                                                                   |                   |                                                     |                     |
| <b>13.7.2 Cross section classification</b><br>$N_{pl,Rd} = 1610 \text{ kN}$<br>$n = \frac{N_{Ed}}{N_{pl,Ed}}$                                                                                                                                                    |                   | Page C                                              | C-166               |
| Limiting value of <i>n</i> for Class 2 sections is 1.0                                                                                                                                                                                                           |                   |                                                     |                     |
| $n = \frac{589}{1610} = 0.37 < 1.0$                                                                                                                                                                                                                              |                   |                                                     |                     |
| Therefore, under bending and $N_{\rm Ed}$ = 589 kN the section is at least Class                                                                                                                                                                                 | s 2.              | Page C                                              | C-166               |
| 13.7.3 Simplified interaction criterion                                                                                                                                                                                                                          |                   |                                                     |                     |
| As the sections meets the criteria in Access Steel document SN048 (see 13.8 of this example), the following verification may be used instead of two verification expressions given in 6.3.3(4) BS EN 1993-1-1.                                                   |                   | n                                                   |                     |
| The criterion to verify is:                                                                                                                                                                                                                                      |                   | Access                                              | -steel              |
| $\frac{N_{\rm Ed}}{N_{\rm min,b,Rd}} + \frac{M_{\rm y,Ed}}{M_{\rm y,b,Rd}} + 1.5 \frac{M_{\rm z,Ed}}{M_{\rm z,cb,Rd}} \le 1.0$                                                                                                                                   |                   | docum                                               | ent SN048           |
| For buckling length $L = 5$ m and $n \le 1.0$                                                                                                                                                                                                                    |                   | Page C                                              | C-167               |
| $N_{\rm b,y,Rd} = 1310 \ \rm kN$                                                                                                                                                                                                                                 |                   |                                                     |                     |
| $N_{\rm b,z,Rd} = 762 \ \rm kN$                                                                                                                                                                                                                                  |                   |                                                     |                     |
| Therefore,                                                                                                                                                                                                                                                       |                   |                                                     |                     |
| $N_{\min,b,Rd} = 762 \text{ kN}$                                                                                                                                                                                                                                 |                   |                                                     |                     |
| Conservatively, the value for $M_{b,Rd}$ may be taken from the axial and ben<br>table in SCI P363 ( $M_{b,Rd} = 109$ kNm) where the values for $M_{b,Rd}$ are ba<br>$C_1 = 1.0$ . However a more exact value may be determined from the ber<br>resistance table. | sed on            |                                                     |                     |
| From Section 13.7 of this example, $C_1 = 1.77$                                                                                                                                                                                                                  |                   | Sheet 8                                             | 3                   |
| For $C_1 = 1.77$ and $L = 5$ m                                                                                                                                                                                                                                   |                   |                                                     |                     |
| $M_{\rm b,Rd}$ = 135 kNm                                                                                                                                                                                                                                         |                   | Page C                                              | C-78                |
| $M_{\rm z,cb,Rd} = \frac{W_{\rm pl,z} f_{\rm y}}{\gamma_{\rm M1}}$                                                                                                                                                                                               |                   | Access<br>docum                                     | -steel<br>ent SN048 |
| / 1911                                                                                                                                                                                                                                                           |                   |                                                     |                     |

| xample 13 - Column in simple construction                                                                                  | Sheet 11  | of 11    | Rev      |
|----------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|
| As the section is Class 2 and the UK National Annex to BS EN 1993-2 me same value for $\gamma_{M0}$ and $\gamma_{M1}$ ,    | 1-1 gives |          |          |
| $M_{z,cb,Rd} = M_{c,z,Rd} = \frac{W_{pl,z} f_y}{\gamma_{M0}}$                                                              |           |          |          |
| $M_{z,cb,Rd} = 63.5 \text{ kNm}$                                                                                           |           | Page C-  | 78       |
| `herefore,                                                                                                                 |           | Access S |          |
| $\frac{N_{\rm Ed}}{N_{\rm min,b,Rd}} + \frac{M_{\rm y,Ed}}{M_{\rm y,b,Rd}} + 1.5 \frac{M_{\rm z,Ed}}{M_{\rm z,cb,Rd}}$     |           | documer  | nt SN048 |
| $= \left(\frac{589}{762}\right) + \left(\frac{11.11}{135}\right) + 1.5 \times \left(\frac{0.35}{63.5}\right) = 0.86 < 1.0$ |           |          |          |
| herefore, the resistance of the member is adequate.                                                                        |           |          |          |
|                                                                                                                            |           |          |          |
|                                                                                                                            |           |          |          |
|                                                                                                                            |           |          |          |
|                                                                                                                            |           |          |          |
|                                                                                                                            |           |          |          |
|                                                                                                                            |           |          |          |
|                                                                                                                            |           |          |          |
|                                                                                                                            |           |          |          |
|                                                                                                                            |           |          |          |
|                                                                                                                            |           |          |          |
|                                                                                                                            |           |          |          |
|                                                                                                                            |           |          |          |
|                                                                                                                            |           |          |          |
|                                                                                                                            |           |          |          |
|                                                                                                                            |           |          |          |

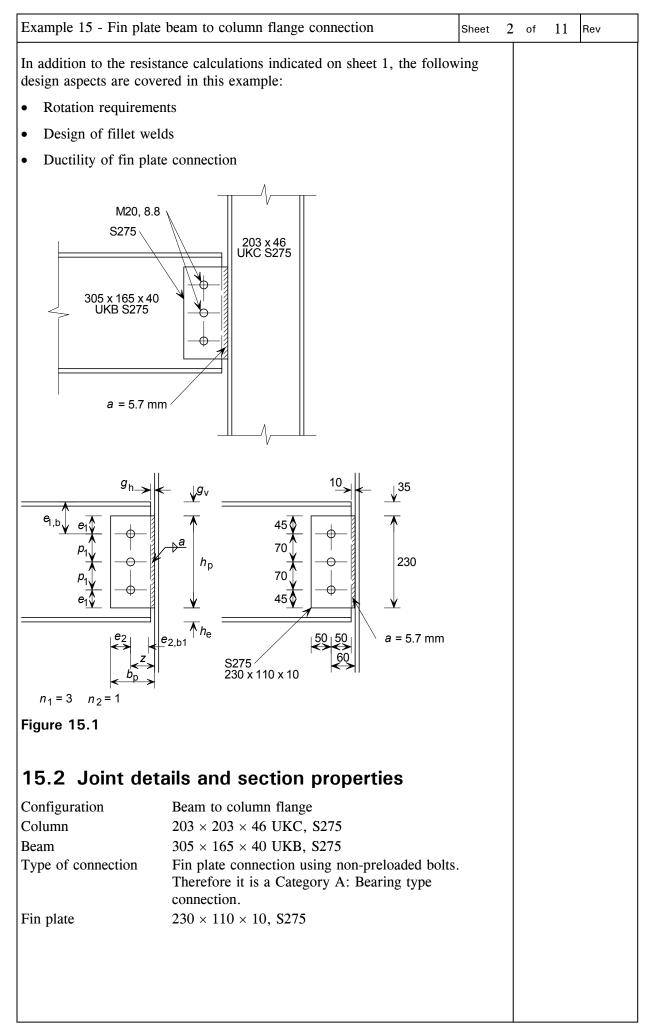
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Job No.                                            | CDS164                                                                                                                  |              | Sheet 1  | of 9                  | 9                                   | Rev                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------------------|-------------------------------------|------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Job Title                                          | Worked exar                                                                                                             | nples to the | Eurocod  | es with               | UK                                  | NA                                                   |
| Silwood Park, Ascot, Berks SL5 7QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Subject                                            | Example 14 connection                                                                                                   | - End Plate  | beam to  | columr                | ı flanş                             | ge                                                   |
| Telephone: (01344) 636525<br>Fax: (01344) 636570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Client                                             | SCI                                                                                                                     | Made by      | MEB      | Date                  | Feb                                 | 2009                                                 |
| CALCULATION SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    | 501                                                                                                                     | Checked by   | DGB      | Date                  | Jul 2                               | .009                                                 |
| <ul><li>14 End Plate bean connection</li><li>14.1 Scope</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                                                                                                                         | C            |          | BS E<br>2005<br>Natio | EN 19<br>, incl<br>onal A<br>ss oth | s are to<br>93-1-8:<br>uding its<br>Annex,<br>erwise |
| Determine the shear and tying resist<br>to column flange connection shown<br>uses non-preloaded bolts (i.e. Catego                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in Figure                                          | e 14.1. The b                                                                                                           | olted conne  | ction    |                       |                                     |                                                      |
| For completeness, all the design ver<br>out. However, in practice, for "nor<br>marked * will usually be the critical<br>calculations for resistances marked v                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mal" con<br>ones. I                                | nnections, the n this example                                                                                           | verification |          |                       |                                     |                                                      |
| Information for the other verification<br>and Access-steel documents SN017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                  |                                                                                                                         | •            |          |                       |                                     |                                                      |
| <ul> <li>For persistent and transient design seemed plate bolt group*</li> <li>Supporting member in bearing</li> <li>End plate in shear (gross section)</li> <li>End plate in shear (net section)</li> <li>End plate in shear (block tearing)</li> <li>End plate in bending</li> <li>Beam web in shear*</li> <li>For accidental design situations (tying Bolts in tension</li> <li>End plate in bending*</li> <li>Supporting member in bending</li> <li>Beam web in tension</li> <li>In addition to the resistance calculate aspects are covered in this example:</li> <li>Ductility of the end plate connection</li> </ul> | V<br>V<br>V<br>Ng resista<br>N<br>N<br>N<br>N<br>N | /Rd,1<br>/Rd,2<br>/Rd,3<br>/Rd,4<br>/Rd,5<br>/Rd,5<br>/Rd,7<br><b>INCE)</b><br>/Rd,u,1<br>/Rd,u,1<br>/Rd,u,2<br>/Rd,u,3 | he following | g design |                       |                                     |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                                                                                                         |              |          |                       |                                     |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                                                                                                         |              |          |                       |                                     |                                                      |


| Example 14 - End plate beam to column flange connection Sheet 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of 9  | Rev |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| Example 14 - End plate beam to column flange connection Sheet 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of Y  | Rev |
| $g_{v} \downarrow$ $p_{1} \downarrow$ $p_{2} \downarrow$ $p_{2} \downarrow$ $q_{2} \downarrow$ $q_{2$ |       |     |
| <b>14.2 Joint details and section properties</b> ConfigurationBeam to column flangeColumn $203 \times 203 \times 46$ UKC, S275Beam $305 \times 165 \times 40$ UKB, S275Type of connectionEnd plate connection using non-preloaded bolts<br>Therefore it is a Category A: Bearing type connectionEnd plate $230 \times 200 \times 10$ S275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.4.1 |     |
| End plate $230 \times 200 \times 10$ , S275 <b>203</b> × <b>203</b> × <b>46 UKC, S275</b> From section property tables:Depth $h_c = 203.2 \text{ mm}$ Width $b_c = 203.2 \text{ mm}$ Web thickness $t_{w,c} = 7.2 \text{ mm}$ Flange thickness $t_{f,c} = 11.0 \text{ mm}$ Root radius $r_c = 10.2 \text{ mm}$ Second moment of area y-y axis $I_{y,c} = 4570 \text{ cm}^4$ Area $A_c = 58.7 \text{ cm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P363  |     |
| The sub-script 'c' has been included to denote the properties relating to the column.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |     |

| Example 14 - End plate beam to colum                                                                                                                                                                                                                                     | n flange o                | onnection                                                     | Sheet 3   | of 9               | Rev     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------|-----------|--------------------|---------|
| Example 14 - Enu place beam to column                                                                                                                                                                                                                                    | Sheet J                   |                                                               | nev       |                    |         |
| For buildings that will be built in the UK, the nominal values of the yield strength $(f_y)$ and the ultimate strength $(f_u)$ for structural steel should be those obtained from the product standard. Where a range is given, the lowest nominal value should be used. |                           |                                                               |           |                    | 993-1-1 |
| For S275 steel and $t \le 16$ mm<br>Yield strength<br>Ultimate tensile strength                                                                                                                                                                                          | $f_{ m y,c} \ f_{ m u,c}$ | $= R_{eH} = 275 \text{ N/mm}$<br>$= R_{m} = 410 \text{ N/mm}$ |           | BS EN 1<br>Table 7 | 0025-2  |
| 205 v 165 v 40 UVD 0075                                                                                                                                                                                                                                                  |                           |                                                               |           |                    |         |
| $305 \times 165 \times 40$ UKB, S275                                                                                                                                                                                                                                     |                           |                                                               |           |                    |         |
| From section property tables:                                                                                                                                                                                                                                            |                           | 202 (                                                         |           |                    |         |
| Depth                                                                                                                                                                                                                                                                    | $h_{b1}$                  | = 303.4  mm                                                   |           | P363               |         |
| Width<br>Wab thickness                                                                                                                                                                                                                                                   | $b_{b1}$                  | = 165.0  mm                                                   |           |                    |         |
| Web thickness                                                                                                                                                                                                                                                            | $t_{\rm w,b1}$            | = 6.0  mm                                                     |           |                    |         |
| Flange thickness                                                                                                                                                                                                                                                         | $t_{\rm f,b1}$            | = 10.2  mm                                                    |           |                    |         |
| Root radius                                                                                                                                                                                                                                                              | $r_{b1}$                  | = 8.9  mm                                                     |           |                    |         |
| Second moment of area y axis                                                                                                                                                                                                                                             | I <sub>y,b1</sub>         |                                                               |           |                    |         |
| Area                                                                                                                                                                                                                                                                     | $A_{b1}$                  | $= 51.3 \text{ cm}^2$                                         |           |                    |         |
| The sub-script 'b' has been included beam.                                                                                                                                                                                                                               | to denote                 | the properties relating                                       | ng to the |                    |         |
| For S275 steel and $t \le 16 \text{ mm}$                                                                                                                                                                                                                                 |                           |                                                               |           | BS EN 1            | 0025-2  |
| Yield strength                                                                                                                                                                                                                                                           | $f_{ m y,b1}$             | $= R_{\rm eH} = 275  {\rm N/mm}$                              | $1^2$     | Table 7            |         |
| Ultimate tensile strength                                                                                                                                                                                                                                                | $f_{ m u,b1}$             | $= R_{\rm m} = 410 \text{ N/mm}^{-1}$                         | 2         |                    |         |
| End Plate - 230 × 200 × 10, S275                                                                                                                                                                                                                                         | 5                         |                                                               |           |                    |         |
| Distance below top of beam                                                                                                                                                                                                                                               | $g_{ m v}$                | = 35 mm                                                       |           |                    |         |
| Plate depth                                                                                                                                                                                                                                                              | $h_{ m p}$                | = 230 mm                                                      |           |                    |         |
| Plate width                                                                                                                                                                                                                                                              | $b_{ m p}$                | = 200 mm                                                      |           |                    |         |
| Plate thickness                                                                                                                                                                                                                                                          | $t_{ m p}$                | = 10 mm                                                       |           |                    |         |
| For S275 steel and $t \le 16 \text{ mm}$                                                                                                                                                                                                                                 |                           |                                                               |           | BS EN 1            | 0025-2  |
| Yield strength                                                                                                                                                                                                                                                           | $f_{\mathrm{y,p}}$        | $= R_{\rm eH} = 275  {\rm N/mm}$                              | -         | Table 7            |         |
| Ultimate tensile strength                                                                                                                                                                                                                                                | $f_{ m u,p}$              | $= R_{\rm m} = 410 \text{ N/mm}^2$                            | 2         |                    |         |
| Direction of load transfer (1)                                                                                                                                                                                                                                           |                           |                                                               |           |                    |         |
| Number of bolt rows                                                                                                                                                                                                                                                      | $n_1$                     | = 3                                                           |           |                    |         |
| Plate edge to first bolt row                                                                                                                                                                                                                                             | $e_1$                     | = 45 mm                                                       |           |                    |         |
| Pitch between bolt rows                                                                                                                                                                                                                                                  | $p_1$                     | = 70 mm                                                       |           |                    |         |
| Direction perpendicular to load transfe                                                                                                                                                                                                                                  | er (2)                    |                                                               |           |                    |         |
| Number of vertical lines of bolts                                                                                                                                                                                                                                        | $n_2$                     | = 2                                                           |           |                    |         |
| Plate edge to first bolt line                                                                                                                                                                                                                                            | $e_2$                     | = 50 mm                                                       |           |                    |         |
| Column edge to bolt line                                                                                                                                                                                                                                                 | $e_{2,c}$                 | = 51.5 mm                                                     |           |                    |         |
| Gauge (i.e. distance between cross cen                                                                                                                                                                                                                                   | -                         | = 100 mm                                                      |           |                    |         |
|                                                                                                                                                                                                                                                                          |                           |                                                               |           |                    |         |
|                                                                                                                                                                                                                                                                          |                           |                                                               |           |                    |         |
|                                                                                                                                                                                                                                                                          |                           |                                                               |           |                    |         |
|                                                                                                                                                                                                                                                                          |                           |                                                               |           |                    |         |
|                                                                                                                                                                                                                                                                          |                           |                                                               |           |                    |         |
|                                                                                                                                                                                                                                                                          |                           |                                                               |           |                    |         |

| Example 14 - End plate beam to column                                                                                    | n flange (                             | connection              | Sheet 4    | of 9                           | Rev              |  |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------|------------|--------------------------------|------------------|--|
|                                                                                                                          |                                        |                         | Uncer 1    |                                |                  |  |
| Bolts                                                                                                                    |                                        |                         |            |                                |                  |  |
| Non pre-loaded, M20 Class 8.8 bolts                                                                                      |                                        |                         |            |                                |                  |  |
| Total number of bolts $(n = n_1 \times n_2)$                                                                             | n                                      | = 6                     |            |                                |                  |  |
| Tensile stress area                                                                                                      |                                        | $= 245 \text{ mm}^2$    |            | P363 Pa                        | ge C-306         |  |
| Diameter of the shank                                                                                                    |                                        | = 20 mm                 |            |                                | -                |  |
| Diameter of the holes                                                                                                    |                                        | = 22 mm                 |            |                                |                  |  |
| Diameter of the washer                                                                                                   | $d_{ m w}$                             | = 37 mm                 |            |                                |                  |  |
| Yield strength                                                                                                           | $f_{ m yb}$                            | $= 640 \text{ N/mm}^2$  |            | Table 3.                       | 1                |  |
| Ultimate tensile strength                                                                                                | $f_{ m ub}$                            | $= 800 \text{ N/mm}^2$  |            |                                |                  |  |
| Fillet welds                                                                                                             |                                        |                         |            |                                |                  |  |
| Leg length                                                                                                               |                                        | 6 mm                    |            |                                |                  |  |
| Throat thickness                                                                                                         | а                                      | = 4.2 mm                |            |                                |                  |  |
|                                                                                                                          |                                        |                         |            |                                |                  |  |
| 14.3 Ductility                                                                                                           |                                        |                         |            |                                |                  |  |
| To ensure sufficient ductility of the bea<br>one of the following criteria should be                                     |                                        |                         | , at least |                                |                  |  |
| $t_{\rm p} \leq \frac{d}{2.8} \sqrt{\frac{f_{\rm ub}}{f_{\rm y,p}}}$ or $t_{\rm f,c}$                                    | $\leq \frac{d}{2.8}\sqrt{\frac{j}{j}}$ | f <sub>ub</sub><br>cy,c |            | Access-steel<br>document SN014 |                  |  |
| $\frac{d}{2.8}\sqrt{\frac{f_{\rm ub}}{f_{\rm y,p}}} = \left(\frac{20}{2.8}\right) \times \sqrt{\frac{800}{275}} = 12.18$ | mm                                     |                         |            |                                |                  |  |
| $t_{\rm p}$ = 10 mm < 12.18 mm                                                                                           |                                        |                         |            |                                |                  |  |
| $t_{\rm f,c} = 11 \text{ mm} < 12.18 \text{ mm}$                                                                         |                                        |                         |            |                                |                  |  |
| Therefore the connection has sufficient                                                                                  | ductility                              |                         |            |                                |                  |  |
|                                                                                                                          | -                                      |                         |            |                                |                  |  |
| 14.4 Partial factors for re                                                                                              | esistar                                | nce                     |            |                                |                  |  |
| 14.4.1 Structural steel                                                                                                  |                                        |                         |            |                                |                  |  |
| $\gamma_{\rm M0} = 1.0$                                                                                                  |                                        |                         |            | BS EN 1<br>NA.2.15             |                  |  |
| $\gamma_{M2} = 1.25$ (plates in bearing in bolto                                                                         | ed conne                               | ctions)                 |            | Table N.                       | A.1              |  |
| For tying resistance verification, $\gamma_{M,u}$                                                                        | = 1.1                                  |                         |            | Access-s<br>documen            | teel<br>nt SN015 |  |
| 14.4.2 Bolts                                                                                                             |                                        |                         |            |                                |                  |  |
| $\gamma_{M2} = 1.25$                                                                                                     |                                        |                         |            | Table N                        | A.1              |  |
| ,                                                                                                                        |                                        |                         |            |                                |                  |  |
| 14.4.3 Welds                                                                                                             |                                        |                         |            |                                |                  |  |
| $\gamma_{\rm M2} = 1.25$                                                                                                 |                                        |                         |            | Table N.                       | A.1              |  |
|                                                                                                                          |                                        |                         |            |                                |                  |  |
|                                                                                                                          |                                        |                         |            |                                |                  |  |

| Example 14 - End plate beam to column flange connection                                                                           | Sheet 5  | of 9      | Rev |
|-----------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-----|
| 14.5 Resistance of the fillet welds                                                                                               |          |           |     |
| To ensure that the fillet welds are full strength, the throat thickness is against the requirement given in SCI publication P358. | verified |           |     |
| For S275 steel                                                                                                                    |          | P358      |     |
| $a \ge 0.45 t_{ m w,b1}$                                                                                                          |          |           |     |
| $0.45t_{\rm w,b1} = 0.45 \times 6 = 2.7 \text{ mm}$                                                                               |          |           |     |
| Here, $a = 4.2 \text{ mm}$ (Sheet 4)                                                                                              |          |           |     |
| 4.2 mm > 2.7 mm                                                                                                                   |          |           |     |
| Therefore the fillet weld is adequate.                                                                                            |          |           |     |
| 14.6 Shear resistance of the connection                                                                                           |          |           |     |
| 14.6.1 End plate bolt group,                                                                                                      |          |           |     |
| The design resistance of the bolt group $V_{\rm Rd}$ is:                                                                          |          | 3.7(1)    |     |
| $V_{\rm Rd} = \sum F_{\rm b,Rd}$ if $F_{\rm v,Rd} \ge (F_{\rm b,Rd})_{\rm max}$                                                   |          |           |     |
| $V_{\text{Rd}} = n(F_{b,\text{Rd}})_{\min}$ if $(F_{b,\text{Rd}})_{\min} \leq F_{v,\text{Rd}} < (F_{b,\text{Rd}})_{\max}$         |          |           |     |
| $V_{\rm Rd} = nF_{\rm v,Rd}$ if $(F_{\rm b,Rd})_{\rm min} > F_{\rm v,Rd}$                                                         |          |           |     |
| where:                                                                                                                            |          |           |     |
| $F_{b,Rd}$ is the design bearing resistance of a single bolt                                                                      |          |           |     |
| $F_{\rm v,Rd}$ is the design shear resistance of a single bolt.                                                                   |          |           |     |
| Resistance of a single bolt in shear                                                                                              |          |           |     |
| The shear resistance of a single bolt $(F_{v,Rd})$ is given by:                                                                   |          |           |     |
| $F_{\rm v,Rd} = \frac{\alpha_{\rm v} f_{\rm ub} A}{2}$                                                                            |          | Table 3.4 |     |
| $F_{\rm v,Rd} = \frac{\alpha_{\rm v} J_{\rm ub} A}{\gamma_{\rm M2}}$                                                              |          |           |     |
| where:                                                                                                                            |          |           |     |
| $\alpha_{\rm v} = 0.6$ for class 8.8 bolts                                                                                        |          |           |     |
| $A = A_{\rm s} = 245 \ \rm mm^2$                                                                                                  |          |           |     |
| $F_{\rm v,Rd} = \frac{0.6 \times 800 \times 245}{1.25} \times 10^{-3} = 94.1 \text{ kN}$                                          |          |           |     |
| End plate in bearing                                                                                                              |          |           |     |
| The bearing resistance of a single bolt $(F_{b,Rd})$ is:                                                                          |          |           |     |
| $E = -\frac{k_1 \alpha_b f_{u,p} dt_p}{k_1 \alpha_b f_{u,p} dt_p}$                                                                |          | Table 3.4 |     |
| $F_{b,Rd} = \frac{k_1 \alpha_b f_{u,p} dt_p}{\gamma_{M2}}$                                                                        |          |           |     |
| where, $\alpha_{\rm b}$ is the least value of $\alpha_{\rm d}$ , $\frac{f_{\rm ub}}{f_{\rm u,p}}$ and 1.0                         |          |           |     |
|                                                                                                                                   |          |           |     |
|                                                                                                                                   |          |           |     |


| Example 14 - End plate beam to column flange connection Sheet 6<br>For end bolts $\alpha_{d} = \frac{e_{1}}{3d_{o}} = \frac{45}{3 \times 22} = 0.68$<br>For inner bolts $\alpha_{d} = \frac{p_{1}}{3d_{o}} - \frac{1}{4} = \left(\frac{70}{3 \times 22}\right) - \left(\frac{1}{4}\right) = 0.81$ | of 9                  | Rev    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|
|                                                                                                                                                                                                                                                                                                   |                       |        |
| For inner bolts $\alpha_{d} = \frac{p_1}{1} - \frac{1}{1} = \left(\frac{70}{1}\right) - \left(\frac{1}{1}\right) = 0.81$                                                                                                                                                                          |                       |        |
| $3d_{\circ}$ 4 (3×22) (4)                                                                                                                                                                                                                                                                         |                       |        |
| $\frac{f_{\rm ub}}{f_{\rm u,p}} = \frac{800}{410} = 1.95$                                                                                                                                                                                                                                         |                       |        |
| Therefore                                                                                                                                                                                                                                                                                         |                       |        |
| $\alpha_{\rm b} = 0.68$                                                                                                                                                                                                                                                                           |                       |        |
| For edge bolts $k_1$ is the smaller of $2.8 \frac{e_2}{d_0} - 1.7$ or 2.5.                                                                                                                                                                                                                        |                       |        |
| $2.8\frac{e_2}{d_0} - 1.7 = 2.8 \times \left(\frac{50}{22}\right) - 1.7 = 4.66$                                                                                                                                                                                                                   |                       |        |
| Therefore, for edge bolts                                                                                                                                                                                                                                                                         |                       |        |
| $k_1 = 2.5$                                                                                                                                                                                                                                                                                       |                       |        |
| Therefore the minimum bearing resistance for a single bolt is:                                                                                                                                                                                                                                    |                       |        |
| $F_{b,Rd} = \frac{2.5 \times 0.68 \times 410 \times 20 \times 10}{1.25} \times 10^{-3} = 112 \text{ kN}$                                                                                                                                                                                          | Table 3.4             |        |
| Resistance of end plate bolt group                                                                                                                                                                                                                                                                |                       |        |
| $F_{\rm v,Rd} = 94.1 \ \rm kN$                                                                                                                                                                                                                                                                    |                       |        |
| $F_{\rm b,Rd}$ = 112 kN                                                                                                                                                                                                                                                                           |                       |        |
| As $(F_{b,Rd})_{min} > F_{v,Rd}$ the resistance of the end plate bolt group is:                                                                                                                                                                                                                   | 3.7(1)                |        |
| $V_{\rm Rd} = nF_{\rm v,Rd}$                                                                                                                                                                                                                                                                      |                       |        |
| To allow for the presence of tension in the bolts, a factor of 0.8 is applied to the resistance. Therefore the resistance of the end plate bolt group is:                                                                                                                                         | Access-st<br>document |        |
| $V_{\rm Rd,1} = 0.8  nF_{\rm v,Rd} = 0.8 \times 6 \times 94.1 = 451.7  \rm kN$                                                                                                                                                                                                                    |                       |        |
| 14.6.2 Beam web in shear                                                                                                                                                                                                                                                                          |                       |        |
| The shear resistance of the beam web $(V_{\text{Rd},7})$ is                                                                                                                                                                                                                                       |                       |        |
|                                                                                                                                                                                                                                                                                                   | BS EN19               | 93-1-1 |
| $V_{\rm Rd.7} = \frac{A_{\rm v} f_{\rm y.b} / \sqrt{3}}{\gamma_{\rm M0}}$                                                                                                                                                                                                                         | 6.2.6(2)              |        |
| From the guidance given in Section 10 of SN0014, the shear area $(A_v)$ to be considered for the beam web may be taken as:                                                                                                                                                                        | Access-st<br>document |        |
| $A_{\rm v} = 0.9  h_{\rm p}  t_{\rm w,b} = 0.9 \times 230 \times 6 = 1242.0  {\rm mm}^2$                                                                                                                                                                                                          |                       |        |
| $V_{\rm Rd,7} = \frac{1242 \times 275 / \sqrt{3}}{1.0} \times 10^{-3} = 197 \text{ kN}$                                                                                                                                                                                                           |                       |        |
|                                                                                                                                                                                                                                                                                                   |                       |        |



| Example 14 - End plate beam to column flange connection                                                                                                                                                 | Sheet 8 | of 9      | Rev      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|----------|
| $M_{\rm pl,1,Rd,u} = \frac{1}{4} \frac{h_{\rm p} t_{\rm p}^2 f_{\rm u,p}}{\gamma_{\rm M,u}} = \frac{1}{4} \times \left(\frac{230 \times 10^2 \times 410}{1.1}\right) \times 10^{-6} = 2.14 \text{ kNs}$ | m       |           | <u> </u> |
| Mode 1 failure – Complete failure of the T-stub flamge                                                                                                                                                  |         |           |          |
| $F_{\rm T,1,Rd} = \frac{\left(8 n_{\rm p} - 2 e_{\rm w}\right) M_{\rm pl,1,Rd,u}}{2 m_{\rm p} n_{\rm p} - e_{\rm w} \left(m_{\rm p} + n_{\rm p}\right)}$                                                |         |           |          |
| $F_{\rm T,1,Rd} = \frac{\left[ (8 \times 50) - (2 \times 9.25) \right] \times 2.14 \times 10^3}{(2 \times 42.25 \times 50) - \left[ 9.25 \times \left( 42.25 + 50 \right) \right]} = 242 \text{ kN}$    |         |           |          |
| Mode 2 failure – Bolt failure with yielding of the T stub flange                                                                                                                                        |         |           |          |
| $F_{\rm T,2,Rd} = \frac{2 M_{\rm pl,2,Rd,u} + n_{\rm p} \sum F_{\rm t,Rd,u}}{m_{\rm p} + n_{\rm p}}$                                                                                                    |         |           |          |
| $F_{t,Rd.u} = \frac{k_2 f_{ub} A_s}{\gamma_{M,u}}$                                                                                                                                                      |         |           |          |
| $k_2 = 0.9$                                                                                                                                                                                             |         | Table 3.4 |          |
| $F_{t,Rd,u} = \frac{0.9 \times 800 \times 245}{1.1} \times 10^{-3} = 160.4 \text{ kN}$                                                                                                                  |         |           |          |
| $\Sigma F_{t,Rd,u} = nF_{t,Rd,u} = 6 \times 160.4 = 962.4 \text{ kN}$                                                                                                                                   |         |           |          |
| $M_{\rm pl,2,Rd,u} = M_{\rm pl,1,Rd,u} = 2.14 \text{ kNm}$                                                                                                                                              |         |           |          |
| $F_{\rm T,2,Rd} = \frac{(2 \times 2.14 \times 10^6) + (50 \times 962.4 \times 10^3)}{42.25 + 50} \times 10^{-3} = 568 \text{ kN}$                                                                       |         |           |          |
| 242 kN ( $F_{T,1,Rd}$ ) < 568 kN ( $F_{T,2,Rd}$ )                                                                                                                                                       |         |           |          |
| Therefore the resistance of the end plate in bending is equal to the Mod failure $(F_{T,1,Rd})$                                                                                                         | le 1    |           |          |
| $N_{Rd,u,2} = 242 \text{ kN}$                                                                                                                                                                           |         |           |          |
|                                                                                                                                                                                                         |         |           |          |
|                                                                                                                                                                                                         |         |           |          |
|                                                                                                                                                                                                         |         |           |          |
|                                                                                                                                                                                                         |         |           |          |
|                                                                                                                                                                                                         |         |           |          |
|                                                                                                                                                                                                         |         |           |          |
|                                                                                                                                                                                                         |         |           |          |
|                                                                                                                                                                                                         |         |           |          |
|                                                                                                                                                                                                         |         |           |          |
|                                                                                                                                                                                                         |         |           |          |

| ables 14.3 and 14.4 summarise the renders of failure. Calculations for the |                                                                                         |                                     |       |  |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------|-------|--|
| re not presented in this example.                                          |                                                                                         | 11                                  |       |  |
| able 14.1 Joint shear resistance                                           |                                                                                         |                                     |       |  |
| Mode of failure                                                            | Joint sh                                                                                | ear resistance                      |       |  |
| End plate bolt group                                                       | $V_{ m Rd,1}$                                                                           | 452 kN                              |       |  |
| Supporting member in bearing                                               | V <sub>Rd,2</sub>                                                                       | 877 kN                              |       |  |
| End plate in shear (gross section)                                         | V <sub>Rd,3</sub>                                                                       | 575 kN                              |       |  |
| End plate in shear (net section)                                           | $V_{ m Rd,4}$                                                                           | 776 kN                              |       |  |
| End plate in shear (block shear)                                           | V <sub>Rd,5</sub>                                                                       | 668 kN                              |       |  |
| End plate in bending                                                       | $V_{ m Rd,6}$                                                                           | ×                                   |       |  |
| Beam web in shear                                                          | $V_{ m Rd,7}$                                                                           | 197 kN                              |       |  |
|                                                                            |                                                                                         |                                     | <br>1 |  |
| Mode of failure                                                            | Joint ty                                                                                | ing resistance                      |       |  |
| Mode of failure<br>Bolts in tension                                        | Joint tyi                                                                               | ing resistance<br>962 kN            |       |  |
| Bolts in tension<br>End plate in bending                                   | $N_{ m Rd,u,1}$<br>$N_{ m Rd,u,2}$                                                      | _                                   |       |  |
| Bolts in tension<br>End plate in bending<br>Supporting member in bending   | N <sub>Rd,u,1</sub>                                                                     | 962 kN                              |       |  |
| Bolts in tension<br>End plate in bending                                   | $N_{\mathrm{Rd,u,1}}$ $N_{\mathrm{Rd,u,2}}$ $N_{\mathrm{Rd,u,3}}$ $N_{\mathrm{Rd,u,4}}$ | 962 kN<br>242 kN<br>N / A<br>514 kN |       |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Job No.                 | CDS 164                                                 |                             | Sheet  | 1 of | 11    | Rev                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------|-----------------------------|--------|------|-------|------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                                                         |                             |        |      |       |                                                      |
| SCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Job Title               |                                                         | <u>^</u>                    |        |      |       |                                                      |
| Silwood Park, Ascot, Berks SL5 7QN<br>Telephone: (01344) 636525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Subject                 | Example 15 - Fin plate beam to connection               |                             |        |      |       | nge                                                  |
| Fax: (01344) 636570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Client                  | SCI                                                     | Made by                     | MEB    | Date | Feb   | 2009                                                 |
| CALCULATION SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | 501                                                     | Checked by                  | DGB    | Date | Jul 2 | 2009                                                 |
| <ul><li>15 Fin plate beam to column flange connection</li><li>15.1 Scope</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                                                         |                             |        |      |       | s are to<br>93-1-8:<br>uding its<br>Annex,<br>erwise |
| Determine the shear and tying resista<br>to column flange connection shown i<br>uses non-preloaded bolts (i.e. Catego                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n Figure                | 15.1. The bo                                            | lted connec                 | tion   |      |       |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | practice,<br>isually be | for "normal"<br>the critical or                         | connections<br>nes. In this | s, the |      |       |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                       | •                                                       | -                           |        |      |       |                                                      |
| verifications marked with an * will usually be the critical ones. In this<br>example, only the calculations for resistances marked with an * are given.Information for the other verifications may be found in SCI publication, P358<br>and Access-steel documents SN017 and SN018 (www.access-steel.com).For persistent and transient design situations<br>Bolts in shear*Pin plate in bearing*V<br>Rd.2Fin plate in shear (gross section)V<br>Rd.3Fin plate in shear (net section)V<br>Rd.4Fin plate in bearing*V<br>Rd.6Fin plate in bearing*V<br>Rd.6Fin plate in bearing*V<br>Rd.7Beam web in bearing*V<br>Rd.8Beam web in shear (gross section)V<br>Rd.9Beam web in shear (net section)V<br>Rd.10Beam web in shear (net section)V<br>Rd.11Supporting element (punching shear)For accidental design situations (tying resistance)<br>Bolts in shear*Bolts in shear*N<br>Rd.11For accidental design situations (tying resistance)<br>Bolts in shear*Bolts in shear*N<br>Rd.12Fin plate in tension (block tearing)N<br>Rd.13Fin plate in tension (block tearing)N<br>Rd.14Fin plate in tension (net section)N<br>Rd.14Fin plate in tension (net section)N<br>Rd.14Fin plate in tension (net section)N<br>Rd.2Fin plate in tension (net section)N<br>Rd.2Fin plate in tension (net s |                         |                                                         |                             |        |      |       |                                                      |
| Beam web in tension (net section)<br>Supporting member in bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (T<br>fir               | Rd,u,7<br>This mode is not<br>n plate connect<br>anges) | ~~ ~                        |        |      |       |                                                      |



| Example 15 - Fin plate beam to colum                                                                                                                                                                                                                                                                                                                                                                        | n flange connection st                                                                                                                                                                                                                                                                                          | ieet 3 | of 11               | Rev    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|--------|
| 203 × 203 × 46 UKC, S275                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                 |        |                     |        |
| From section property tables:                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                 |        |                     |        |
| Depth<br>Width<br>Web thickness<br>Flange thickness<br>Root radius<br>Second moment of area y axis<br>Area                                                                                                                                                                                                                                                                                                  | $h_{\rm c} = 203.2 \text{ mm}$<br>$b_{\rm c} = 203.2 \text{ mm}$<br>$t_{\rm w,c} = 7.2 \text{ mm}$<br>$t_{\rm f,c} = 11.0 \text{ mm}$<br>$r_{\rm c} = 10.2 \text{ mm}$<br>$I_{\rm y,c} = 4570 \text{ cm}^4$<br>$A_{\rm c} = 58.7 \text{ cm}^2$                                                                  |        | P363                |        |
| For buildings that will be built in the U strength $(f_y)$ and the ultimate strength ( obtained from the product standard. W nominal value should be used.                                                                                                                                                                                                                                                  | $f_{\rm u}$ ) for structural steel should be tho                                                                                                                                                                                                                                                                |        | BS EN 19<br>NA.2.4  | 93-1-1 |
| For S275 steel and $t \le 16$ mm<br>Yield strength<br>Ultimate tensile strength<br>$305 \times 165 \times 40$ UKB, S275                                                                                                                                                                                                                                                                                     | $f_{y,c} = R_{eH} = 275 \text{ N/mm}^2$<br>$f_{u,c} = R_m = 410 \text{ N/mm}^2$                                                                                                                                                                                                                                 |        | BS EN 10<br>Table 7 | 025-2  |
| From section property tables:                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                 |        |                     |        |
| Depth<br>Width<br>Web thickness<br>Flange thickness<br>Root radius<br>Second moment of area y axis<br>Area                                                                                                                                                                                                                                                                                                  | $h_{\rm b} = 303.4 \text{ mm}$<br>$b_{\rm b} = 165.0 \text{ mm}$<br>$t_{\rm w,b} = 6.0 \text{ mm}$<br>$t_{\rm f,b} = 10.2 \text{ mm}$<br>$r_{\rm b} = 8.9 \text{ mm}$<br>$I_{\rm y,b} = 8500 \text{ cm}^4$<br>$A_{\rm b} = 51.3 \text{ cm}^2$                                                                   |        | P363                |        |
| For S275 steel and $t \le 16$ mm<br>Yield strength<br>Ultimate tensile strength                                                                                                                                                                                                                                                                                                                             | $f_{y,b} = R_{eH} = 275 \text{ N/mm}^2$<br>$f_{u,b} = R_m = 410 \text{ N/mm}^2$                                                                                                                                                                                                                                 | I      | BS EN 10<br>Table 7 | 025-2  |
| Fin plate – $230 \times 110 \times 10$ , S275<br>Distance below top of beam<br>Horizontal gap (end beam to column fl<br>Plate depth<br>Plate width<br>Plate thickness<br>For S275 steel and $t \le 16$ mm<br>Yield strength<br>Ultimate tensile strength<br>Direction of load transfer (1)<br>Number of bolt rows<br>Plate edge to first bolt row<br>Beam edge to first bolt row<br>Pitch between bolt rows | $g_v = 35 \text{ mm}$<br>$ange)g_h = 10 \text{ mm}$<br>$h_p = 230 \text{ mm}$<br>$b_p = 110 \text{ mm}$<br>$t_p = 10 \text{ mm}$<br>$f_{y,p} = R_{eH} = 275 \text{ N/mm}^2$<br>$f_{u,p} = R_m = 410 \text{ N/mm}^2$<br>$n_1 = 3$<br>$e_1 = 45 \text{ mm}$<br>$e_{1,b} = 80 \text{ mm}$<br>$p_1 = 70 \text{ mm}$ | I      | BS EN 10<br>Table 7 | 025-2  |

| Example 15 - Fin plate beam to column                                                                                  | flange      | connection             | Sheet 4 | 1 of         | 11      | Rev          |
|------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|---------|--------------|---------|--------------|
| Direction perpendicular to load transfer                                                                               | • (2)       |                        |         |              |         |              |
| Number of vertical lines of bolts                                                                                      | $n_2$       | = 1                    |         |              |         |              |
| Plate edge to first bolt line                                                                                          | $e_2$       | = 50 mm                |         |              |         |              |
| Beam edge to last bolt line                                                                                            | $e_{2,b}$   | = 50 mm                |         |              |         |              |
| Lever arm                                                                                                              | Z           | = 60 mm                |         |              |         |              |
| Bolts                                                                                                                  |             |                        |         |              |         |              |
| Non pre-loaded, M20 Class 8.8 bolts                                                                                    |             |                        |         |              |         |              |
| Total number of bolts $(n = n_1 \times n_2)$                                                                           | n           | = 3                    |         |              |         |              |
| Tensile stress area                                                                                                    | $A_{\rm s}$ | $= 245 \text{ mm}^2$   |         | P363         | Page    | e C-306      |
| Diameter of the shank                                                                                                  | ď           |                        |         |              | U       |              |
| Diameter of the holes                                                                                                  | $d_0$       | = 22 mm                |         |              |         |              |
| Yield strength                                                                                                         | -           | $= 640 \text{ N/mm}^2$ |         | Table        | e 3.1   |              |
| Ultimate tensile strength                                                                                              | $f_{ m ub}$ | •                      |         |              |         |              |
| Welds                                                                                                                  |             |                        |         |              |         |              |
| Leg length                                                                                                             |             | = 8 mm                 |         |              |         |              |
| Throat thickness                                                                                                       | а           | = 5.7  mm              |         |              |         |              |
| <b>15.3 Rotational requireme</b><br>It is assumed that there is sufficient rota<br>in Access-steel document SN016 (www | ation ca    | · ·                    | -       |              |         |              |
| 15.4 Partial factors for re                                                                                            | sista       | nce                    |         |              |         |              |
| 15.4.1 Structural steel                                                                                                |             |                        |         |              |         |              |
| $\gamma_{\rm M0} = 1.0$                                                                                                |             |                        |         | BS E<br>NA.2 |         | 93-1-1       |
| Plate in bearing                                                                                                       |             |                        |         |              |         |              |
| $\gamma_{M2} = 1.25$                                                                                                   |             |                        |         | Table        | e NA    | .1           |
| For tying resistance verification, $\gamma_{M,u}$                                                                      | = 1.1       |                        |         | Acce<br>docu |         | eel<br>SN018 |
| 15.4.2 Bolts                                                                                                           |             |                        |         |              |         |              |
| $\gamma_{M2} = 1.25$                                                                                                   |             |                        |         | Table        | e NA    | .1           |
| For tying resistance verification, $\gamma_{M,u}$                                                                      | = 1.1       |                        |         | Acce<br>docu |         | el<br>SN018  |
| 15.4.3 Welds                                                                                                           |             |                        |         |              |         |              |
| $\gamma_{M2} = 1.25$                                                                                                   |             |                        |         |              |         |              |
|                                                                                                                        |             |                        |         | Table        | e NA    | .1           |
|                                                                                                                        |             |                        |         |              | - 1 1 1 |              |
|                                                                                                                        |             |                        |         |              |         |              |
|                                                                                                                        |             |                        |         |              |         |              |
|                                                                                                                        |             |                        |         | 1            |         |              |

| Example 15 - Fin plate beam to column flange connection                                                | Sheet   | 5 of  | 11    | Rev |
|--------------------------------------------------------------------------------------------------------|---------|-------|-------|-----|
| 15.5 Resistance of the fillet welds                                                                    |         |       |       |     |
| For an S275 fin plate verify that the throat thickness $(a)$ of the fillet we                          | ld is:. |       |       |     |
| $a \ge 0.5 t_{ m p}$                                                                                   |         | P358  |       |     |
| $0.5t_{\rm p} = 0.5 \times 10 = 5 \mathrm{mm}$                                                         |         |       |       |     |
| Here, $a = 5.7 \text{ mm}$ (Sheet 4)                                                                   |         |       |       |     |
| As 5.7 mm > 5 mm, the fillet weld is adequate.                                                         |         |       |       |     |
| 15.6 Shear resistance of the joint                                                                     |         |       |       |     |
| 15.6.1 Bolts in shear                                                                                  |         |       |       |     |
| The shear resistance of a single bolt, $F_{v,Rd}$ is given by:                                         |         | Table | e 3.4 |     |
| $F_{\rm v,Rd} = \frac{\alpha_{\rm v} f_{\rm ub} A}{1}$                                                 |         |       |       |     |
| γ, Ku<br>γ M2                                                                                          |         |       |       |     |
| where:                                                                                                 |         |       |       |     |
| $\alpha_v = 0.6$ for class 8.8 bolts                                                                   |         |       |       |     |
| $A = A_s = 245 \text{ mm}^2$                                                                           |         |       |       |     |
| $F_{\rm v,Rd} = \frac{0.6 \times 800 \times 245}{1.25} \times 10^{-3} = 94.1 \text{ kN}$               |         |       |       |     |
| For a single vertical line of bolts (i.e. $n_2 = 1$ and $n = n_1$ )                                    |         |       |       |     |
| $\alpha = 0$ and                                                                                       |         |       |       |     |
| $\beta = \frac{6z}{n(n+1)p_1} = \frac{6 \times 60}{3 \times 4 \times 70} = 0.43$                       |         |       |       |     |
| The shear resistance of the bolts in the joint is                                                      |         |       |       |     |
| $V_{\rm Rd,1} = \frac{n F_{\rm v,Rd}}{\sqrt{(1+\alpha n)^2 + (\beta n)^2}}$                            |         |       |       |     |
| $V_{\text{Rd},1} = \frac{3 \times 94.1}{\sqrt{(1+0 \times 3)^2 + (0.43 \times 3)^2}} = 173 \text{ kN}$ |         |       |       |     |
| 15.6.2 Fin plate in bearing                                                                            |         |       |       |     |
| For a single vertical line of bolts (i.e. $n_2 = 1$ and $n = n_1$ )                                    |         |       |       |     |
| $\alpha = 0$ and $\beta = 0.43$ (from section 15.6.1)                                                  |         |       |       |     |
| The bearing resistance of a single bolt $(F_{b,Rd})$ is given by<br>$k_1 \alpha_b f_u dt$              |         | Table | e 3.4 |     |
| $F_{\rm b,Rd} = \frac{k_1 \alpha_{\rm b} f_{\rm u} dt}{\gamma_{\rm M2}}$                               |         |       |       |     |
|                                                                                                        |         |       |       |     |
|                                                                                                        |         |       |       |     |
|                                                                                                        |         |       |       |     |
|                                                                                                        |         |       |       |     |

| Example 15 - Fin plate beam to column flange connection                                                                                  | Sheet              | 6 | of    | 11  | Rev |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---|-------|-----|-----|
| Therefore vertical bearing resistance of a single bolt on a fin plate, $F_{b,Rc}$                                                        | <sub>ver</sub> is: |   |       |     |     |
| $F_{b,Rd,ver} = \frac{k_1 \alpha_b f_{u,p} dt_p}{\gamma_{M2}}$                                                                           |                    |   |       |     |     |
| where:                                                                                                                                   |                    |   |       |     |     |
| $\alpha_{\rm b}$ is the least value of $\frac{e_1}{3d_0}$ ; $\frac{p_1}{3d_0} - \frac{1}{4}$ ; $\frac{f_{\rm ub}}{f_{\rm u,p}}$ and 1.0. |                    |   |       |     |     |
| $\frac{e_1}{3d_0} = \frac{45}{3 \times 22} = 0.68$                                                                                       |                    |   |       |     |     |
| $\frac{p_1}{3d_0} - \frac{1}{4} = \left(\frac{70}{3 \times 22}\right) - \left(\frac{1}{4}\right) = 0.81$                                 |                    |   |       |     |     |
| $\frac{f_{\rm ub}}{f_{\rm u,p}} = \frac{800}{410} = 1.95$                                                                                |                    |   |       |     |     |
| Therefore, $\alpha_{\rm b} = 0.68$                                                                                                       |                    |   |       |     |     |
| For edge bolts $k_1$ is the lesser value of $\frac{2.8 \times e_2}{d_0} - 1.7$ and 2.5                                                   |                    |   |       |     |     |
| $\frac{2.8 \times e_2}{d_0} - 1.7 = \left(\frac{2.8 \times 50}{22}\right) - 1.7 = 4.66$                                                  |                    |   |       |     |     |
| Therefore, $k_1 = 2.5$                                                                                                                   |                    |   |       |     |     |
| Thus, the vertical bearing resistance of a single bolt on a fin plate, $F_{b,Rd}$                                                        | <sub>ver</sub> is: |   |       |     |     |
| $F_{b,Rd,ver} = \frac{2.5 \times 0.68 \times 410 \times 20 \times 10}{1.25} \times 10^{-3} = 111.5 \text{ kN}$                           |                    |   |       |     |     |
| The horizontal bearing resistance of a single bolt in a fin plate $(F_{b,Rd,hor})$                                                       | is                 | - | Fable | 3.4 |     |
| $F_{b,Rd,hor} = \frac{k_1 \alpha_b f_{u,p} dt_p}{\gamma_{M2}}$                                                                           |                    |   |       |     |     |
| where:                                                                                                                                   |                    |   |       |     |     |
| $\alpha_{\rm b}$ is the least value of $\frac{e_2}{3d_0}$ ; $\frac{f_{\rm ub}}{f_{\rm u,p}}$ and 1.0                                     |                    |   |       |     |     |
| $\frac{e_2}{3d_0} = \frac{50}{3 \times 22} = 0.76$                                                                                       |                    |   |       |     |     |
| $\frac{f_{\rm ub}}{f_{\rm u,p}} = \frac{800}{410} = 1.95$                                                                                |                    |   |       |     |     |
| Therefore, $\alpha_{\rm b} = 0.76$                                                                                                       |                    |   |       |     |     |
| $k_1$ is the least value of $\frac{2.8e_1}{d_0} - 1.7$ ; $\frac{1.4p_1}{d_0} - 1.7$ and 2.5                                              |                    |   |       |     |     |
|                                                                                                                                          |                    |   |       |     |     |

| Example 15 - Fin plate beam to column flange connection Shee                                                                                                                                                                                                                                                                                                                                                                                                | : 7 | 7 of | 11             | Rev         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|----------------|-------------|
| $\frac{2.8e_1}{d_0} - 1.7 = \left(\frac{2.8 \times 45}{22}\right) - 1.7 = 4.03$ $\frac{1.4p_1}{d_0} - 1.7 = \left(\frac{1.4 \times 70}{22}\right) - 1.7 = 2.75$ Therefore, $k_1 = 2.5$ Thus, the horizobtal bearing resitance of a single bolt is $F_{b,Rd,hor} = \frac{2.5 \times 0.76 \times 410 \times 20 \times 10}{1.25} \times 10^{-3} = 124.6 \text{ kN}$ The bearing resistance of the fin plate is $V_{Rd,2} = \frac{n}{\sqrt{(n-1)^2 + (n-1)^2}}$ |     |      | ss-ste<br>ment | el<br>SN017 |
| $V_{\text{Rd},2} = \frac{n}{\sqrt{\left(\frac{1+\alpha n}{F_{\text{b,Rd,ver}}}\right)^2 + \left(\frac{\beta n}{F_{\text{b,Rd,hor}}}\right)^2}}}$ $V_{\text{Rd},2} = \frac{3}{\sqrt{\left(\frac{1+0\times3}{111.5}\right)^2 + \left(\frac{0.43\times3}{124.6}\right)^2}} = 219 \text{ kN}$                                                                                                                                                                   |     |      |                |             |
| 15.6.3 Beam web in bearing                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |      |                |             |
| For a single vertical line of bolts (i.e. $n_2 = 1$ and $n = n_1$ )                                                                                                                                                                                                                                                                                                                                                                                         |     |      |                |             |
| $\alpha = 0$ and $\beta = 0.43$ (from Section 15.6.1)                                                                                                                                                                                                                                                                                                                                                                                                       |     |      |                |             |
| The bearing resistance of a single bolt $(F_{b,Rd,})$ is:                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |                |             |
| $F_{\rm b,Rd,} = \frac{k_1 \alpha_{\rm b} f_{\rm u} dt}{\gamma_{\rm M2}}$                                                                                                                                                                                                                                                                                                                                                                                   |     |      |                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |                |             |
| Therefore the vertical bearing resistance of a single bolt in a beam web, $(F_{b,Rd,ver})$ is:                                                                                                                                                                                                                                                                                                                                                              |     |      |                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |                |             |
| $F_{b,Rd,ver} = \frac{k_1 \alpha_b f_{u,b} dt_{w,b}}{\gamma_{M2}}$                                                                                                                                                                                                                                                                                                                                                                                          |     |      |                |             |
| where:                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |      |                |             |
| $\alpha_{\rm b}$ is the least value of $\frac{p_1}{3d_0} - \frac{1}{4}$ ; $\frac{f_{\rm ub}}{f_{\rm u,b}}$ and 1.0                                                                                                                                                                                                                                                                                                                                          |     |      |                |             |
| $\frac{p_1}{3d_0} - \frac{1}{4} = \left(\frac{70}{3 \times 22}\right) - \frac{1}{4} = 0.81$                                                                                                                                                                                                                                                                                                                                                                 |     |      |                |             |
| $\frac{f_{\rm ub}}{f_{\rm u,b}} = \frac{800}{410} = 1.95$                                                                                                                                                                                                                                                                                                                                                                                                   |     |      |                |             |
| Therefore, $\alpha_{\rm b} = 0.81$                                                                                                                                                                                                                                                                                                                                                                                                                          |     |      |                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |                |             |

|                      |                       |      | 11     | Rev                           |
|----------------------|-----------------------|------|--------|-------------------------------|
|                      |                       |      |        | <u>I</u>                      |
|                      |                       |      |        |                               |
|                      |                       |      |        |                               |
|                      |                       |      |        |                               |
|                      |                       |      |        |                               |
|                      |                       |      |        |                               |
|                      |                       |      |        |                               |
|                      |                       |      |        |                               |
| <sub>,hor</sub> ) is |                       |      |        |                               |
|                      |                       |      |        |                               |
|                      |                       |      |        |                               |
|                      |                       |      |        |                               |
|                      |                       |      |        |                               |
|                      |                       |      |        |                               |
|                      |                       |      |        |                               |
|                      |                       |      |        |                               |
|                      |                       |      |        |                               |
|                      |                       |      |        |                               |
|                      |                       |      |        |                               |
|                      |                       |      |        |                               |
|                      |                       |      |        |                               |
|                      |                       | Acce | ss-ste | el                            |
|                      |                       | docu | ment   | SN017                         |
|                      |                       |      |        |                               |
|                      |                       |      |        |                               |
|                      | <sub>i,hor</sub> ) is |      | Acce   | I,hor) is Access-ste document |

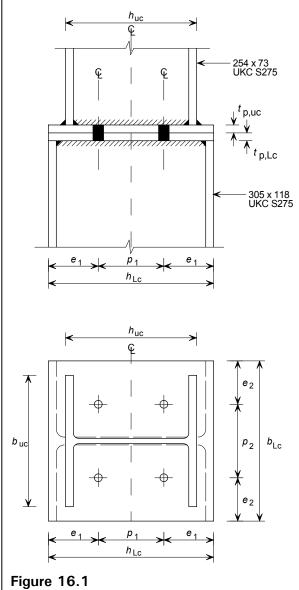
| Example 15 - Fin plate beam to column flange connection                                                                                                                                                                  | Sheet | 9 | of | 11 | Rev |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---|----|----|-----|
| 15.7 Tying resistance of the joint                                                                                                                                                                                       |       |   |    |    |     |
| BS EN 1993-1-8 does not give any guidance on tying resistance of connections. Therefore, the guidance given in the NCCI Access Steel document SN018 is used to determine the tying resistance of the end pla             | te.   |   |    |    |     |
| As large strains and large deformations are associated with tying resistar failure modes, SN015 recommends that ultimate tensile strengths ( $f_u$ ) be and the partial factor for tying $\gamma_{M,u}$ be taken as 1.1. |       |   |    |    |     |
| 15.7.1 Bolts in shear                                                                                                                                                                                                    |       |   |    |    |     |
| For a single bolt in shear                                                                                                                                                                                               |       |   |    |    |     |
| $F_{\rm v,Rd,u} = \frac{\alpha_{\rm v} f_{\rm ub} A}{\gamma_{\rm M,u}}$                                                                                                                                                  |       |   |    |    |     |
| where:                                                                                                                                                                                                                   |       |   |    |    |     |
| $\alpha_{\rm v}$ = 0.6 for grade 8.8 bolts                                                                                                                                                                               |       |   |    |    |     |
| $A = A_{\rm s} = 245 \text{ mm}^2$                                                                                                                                                                                       |       |   |    |    |     |
| Thus, $F_{v,Rd,u} = \frac{0.6 \times 800 \times 245}{1.1} \times 10^{-3} = 106.9 \text{ kN}$                                                                                                                             |       |   |    |    |     |
| Therefore the tying resistance of all the bolts in the joint is                                                                                                                                                          |       |   |    |    |     |
| $N_{\rm Rd,u,1} = nF_{\rm v,Rd,u} = 3 \times 106.9 = 320.7 \text{ kN}$                                                                                                                                                   |       |   |    |    |     |
| <b>15.7.2 Fin plate in bearing</b><br>The bearing resistance of a single bolt $(F_{b,Rd})$ is                                                                                                                            |       |   |    |    |     |
| $F_{\rm b,Rd} = \frac{k_1 \alpha_{\rm b} f_{\rm u} dt}{k_1 \alpha_{\rm b} f_{\rm u} dt}$                                                                                                                                 |       |   |    |    |     |
| γ <sub>M,u</sub>                                                                                                                                                                                                         |       |   |    |    |     |
| Therefore the horizontal bearing resistance of a single bolt in a fin plate tying $(F_{b,Rd,u,hor})$ is                                                                                                                  | in    |   |    |    |     |
| $F_{\mathrm{b,Rd,u,hor}} = \frac{k_1 \alpha_{\mathrm{b}} f_{\mathrm{u,p}} dt_{\mathrm{p}}}{\gamma_{\mathrm{M,u}}}$                                                                                                       |       |   |    |    |     |
| where:                                                                                                                                                                                                                   |       |   |    |    |     |
| $\alpha_{\rm b}$ is the least value of $\frac{e_2}{3d_o}$ ; $\frac{f_{\rm ub}}{f_{\rm u,b1}}$ and 1.0                                                                                                                    |       |   |    |    |     |
| $\frac{e_2}{3d_o} = \frac{50}{3 \times 22} = 0.76$                                                                                                                                                                       |       |   |    |    |     |
| $\frac{f_{\rm ub}}{f_{\rm u,b1}} = \frac{800}{410} = 1.95$                                                                                                                                                               |       |   |    |    |     |
| Therefore, $\alpha_{\rm b} = 0.76$                                                                                                                                                                                       |       |   |    |    |     |
| $k_1$ is the least value of $2.8 \frac{e_1}{d_0} - 1.7$ ; $1.4 \frac{p_1}{d_0} - 1.7$ and 2.5                                                                                                                            |       |   |    |    |     |
|                                                                                                                                                                                                                          |       |   |    |    |     |

| Example 15 - Fin plate beam to column flange connection                                                            | Sheet                  | 10 | of | 11 | Rev  |
|--------------------------------------------------------------------------------------------------------------------|------------------------|----|----|----|------|
|                                                                                                                    | JIEEL                  |    |    | 11 | 1164 |
| $2.8\frac{e_1}{d_0} - 1.7 = \frac{2.8 \times 45}{22} - 1.7 = 4.03$                                                 |                        |    |    |    |      |
| $1.4\frac{p_1}{d_0} - 1.7 = \frac{1.4 \times 70}{22} - 1.7 = 2.75$                                                 |                        |    |    |    |      |
| Therefore, $k_1 = 2.5$                                                                                             |                        |    |    |    |      |
| The horizontal bearing resitance of a single bolt is                                                               |                        |    |    |    |      |
| $F_{b,Rd,u,hor} = \frac{2.5 \times 0.76 \times 410 \times 20 \times 10}{1.1} \times 10^{-3} = 141.6 \text{ kN}$    |                        |    |    |    |      |
| Therefore the horizontal tying resistance of the fin plate in bearing in ty                                        | ing is                 |    |    |    |      |
| $N_{\rm Rd,u,2} = nF_{\rm b,Rd.u.hor} = 3 \times 141.6 = 425 \text{ kN}$                                           |                        |    |    |    |      |
|                                                                                                                    |                        |    |    |    |      |
| 15.7.3 Beam web in bearing                                                                                         | \ ·                    |    |    |    |      |
| The horizontal bearing resistance of a single bolt in the beam web $(F_{b,Rd})$                                    | <sub>,u,hor</sub> ) 18 |    |    |    |      |
| $F_{b,Rd,u,hor} = \frac{k_1 \alpha_b f_{u,b} dt_{w,b}}{\gamma_{M,u}}$                                              |                        |    |    |    |      |
| where:                                                                                                             |                        |    |    |    |      |
| $\alpha_{\rm b}$ is the least value of $\frac{e_{2,\rm b}}{3d_o}$ ; $\frac{f_{\rm ub}}{f_{\rm u,\rm b}}$ ; and 1.0 |                        |    |    |    |      |
| $\frac{e_{2,b}}{3d_o} = \frac{50}{3 \times 22} = 0.76$                                                             |                        |    |    |    |      |
| $\frac{f_{\rm ub}}{f_{\rm u,b}} = \frac{800}{410} = 1.95$                                                          |                        |    |    |    |      |
| Therefore:                                                                                                         |                        |    |    |    |      |
| $\alpha_{\rm b} = 0.76$                                                                                            |                        |    |    |    |      |
| $k_1$ is the least value of $1.4 \frac{p_1}{d_0} - 1.7$ and 2.5                                                    |                        |    |    |    |      |
| $1.4\frac{p_1}{d_0} - 1.7 = \frac{1.4 \times 70}{22} - 1.7 = 2.75$                                                 |                        |    |    |    |      |
| Therefore, $k_1 = 2.5$                                                                                             |                        |    |    |    |      |
| The horizontal bearing resitance of a single bolt in the web is                                                    |                        |    |    |    |      |
| $F_{b,Rd,u,hor} = \frac{2.5 \times 0.76 \times 410 \times 20 \times 6}{1.1} \times 10^{-3} = 85.0 \text{ kN}$      |                        |    |    |    |      |
| The bearing resistance of the beam web is                                                                          |                        |    |    |    |      |
| $N_{\rm Rd,u,5} = nF_{\rm b,Rd,u,hor} = 3 \times 85 = 255 \text{ kN}$                                              |                        |    |    |    |      |
|                                                                                                                    |                        |    |    |    |      |
|                                                                                                                    |                        |    |    |    |      |
|                                                                                                                    |                        |    |    |    |      |

| Mode of failure                                                                                                                                                                                                                                                                                                                                               | loint cheer                                                                                                                                          | resistance                                                                                           | _ |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---|--|--|
| Bolts in shear                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                      | 173 kN                                                                                               | _ |  |  |
| Fin plate in bearing                                                                                                                                                                                                                                                                                                                                          | V <sub>Rd,1</sub><br>V <sub>Rd,2</sub>                                                                                                               | 219 kN                                                                                               | _ |  |  |
| Fin plate in shear (gross section)                                                                                                                                                                                                                                                                                                                            | $V_{\rm Rd,2}$<br>$V_{\rm Rd,3}$                                                                                                                     | 219 kN<br>288 kN                                                                                     | - |  |  |
| Fin plate in shear (gross section)                                                                                                                                                                                                                                                                                                                            | $V_{\rm Rd,3}$<br>$V_{\rm Rd,4}$                                                                                                                     | 388 kN                                                                                               | - |  |  |
| Fin plate in shear (block shear)                                                                                                                                                                                                                                                                                                                              | V <sub>Rd,4</sub>                                                                                                                                    | 270 kN                                                                                               | - |  |  |
| Fin plate in bending                                                                                                                                                                                                                                                                                                                                          | V <sub>Rd,5</sub>                                                                                                                                    | N/A                                                                                                  | - |  |  |
| Fin plate buckling                                                                                                                                                                                                                                                                                                                                            | V <sub>Rd,7</sub>                                                                                                                                    | 777 kN                                                                                               | - |  |  |
| Beam web in bearing                                                                                                                                                                                                                                                                                                                                           | V <sub>Rd,8</sub>                                                                                                                                    | 141 kN                                                                                               | _ |  |  |
| Beam web in shear (gross section)                                                                                                                                                                                                                                                                                                                             | V <sub>Rd,9</sub>                                                                                                                                    | 319 kN                                                                                               |   |  |  |
| beam web in shear (gross section)                                                                                                                                                                                                                                                                                                                             | · Ku,                                                                                                                                                |                                                                                                      | _ |  |  |
| Beam web in shear (gross section)<br>Beam web in shear (net section)                                                                                                                                                                                                                                                                                          | $V_{\rm Rd10}$                                                                                                                                       | 381 kN                                                                                               |   |  |  |
| Beam web in shear (net section)<br>Beam web in shear (block shear)<br>The design shear resistance of the fin pl $V_{\rm Rd} = V_{\rm Rd,8} = 141 \text{ kN}$                                                                                                                                                                                                  | $     V_{Rd,10}     V_{Rd,11}     ate connection is $                                                                                                | 196 kN                                                                                               |   |  |  |
| Beam web in shear (net section)                                                                                                                                                                                                                                                                                                                               | <i>V</i> <sub>Rd,11</sub>                                                                                                                            | 196 kN                                                                                               | _ |  |  |
| Beam web in shear (net section)<br>Beam web in shear (block shear)<br>The design shear resistance of the fin pl $V_{\rm Rd} = V_{\rm Rd,8} = 141$ kN<br>Table 15.2 Joint tying resistance                                                                                                                                                                     | V <sub>Rd,11</sub><br>ate connection is                                                                                                              | 196 kN                                                                                               | _ |  |  |
| Beam web in shear (net section)<br>Beam web in shear (block shear)<br>The design shear resistance of the fin pl $V_{\rm Rd} = V_{\rm Rd,8} = 141$ kN<br>Table 15.2 Joint tying resistance<br>Mode of failure                                                                                                                                                  | V <sub>Rd,11</sub> ate connection is       Joint shear                                                                                               | 196 kN<br>resistance                                                                                 | _ |  |  |
| Beam web in shear (net section)<br>Beam web in shear (block shear)<br>The design shear resistance of the fin pl<br>$V_{\text{Rd}} = V_{\text{Rd},8} = 141 \text{ kN}$<br>Table 15.2 Joint tying resistance<br>Mode of failure<br>Bolts in shear                                                                                                               | $V_{Rd,11}$ ate connection is $Joint shear$ $N_{Rd,u,1}$                                                                                             | resistance<br>321 kN                                                                                 | _ |  |  |
| Beam web in shear (net section)<br>Beam web in shear (block shear)<br>The design shear resistance of the fin pl<br>$V_{\text{Rd}} = V_{\text{Rd},8} = 141 \text{ kN}$<br>Table 15.2 Joint tying resistance<br>Mode of failure<br>Bolts in shear<br>Fin plate in bearing                                                                                       | $V_{\text{Rd},11}$ ate connection is       Joint shear $N_{\text{Rd},u,1}$ $N_{\text{Rd},u,2}$                                                       | 196 kN           resistance           321 kN           425 kN                                        | _ |  |  |
| Beam web in shear (net section)<br>Beam web in shear (block shear)<br>The design shear resistance of the fin pl<br>$V_{Rd} = V_{Rd,8} = 141$ kN<br><b>Table 15.2 Joint tying resistance</b><br>Mode of failure<br>Bolts in shear<br>Fin plate in bearing<br>Fin plate in tension (block tearing)                                                              | $V_{\text{Rd},11}$ ate connection is       Joint shear $N_{\text{Rd},u,1}$ $N_{\text{Rd},u,2}$ $N_{\text{Rd},u,3}$                                   | 196 kN           resistance           321 kN           425 kN           743 kN                       |   |  |  |
| Beam web in shear (net section)<br>Beam web in shear (block shear)<br>The design shear resistance of the fin pl<br>$V_{Rd} = V_{Rd,8} = 141$ kN<br><b>Table 15.2 Joint tying resistance</b><br>Mode of failure<br>Bolts in shear<br>Fin plate in bearing<br>Fin plate in tension (block tearing)<br>Fin plate in tension (net section)                        | V <sub>Rd,11</sub> ate connection is           Joint shear           N <sub>Rd,u,1</sub> N <sub>Rd,u,2</sub> N <sub>Rd,u,3</sub> N <sub>Rd,u,4</sub> | 196 kN         resistance         321 kN         425 kN         743 kN         550 kN                |   |  |  |
| Beam web in shear (net section)<br>Beam web in shear (block shear)<br>The design shear resistance of the fin pl<br>$V_{Rd} = V_{Rd,8} = 141$ kN<br><b>Table 15.2 Joint tying resistance</b><br>Mode of failure<br>Bolts in shear<br>Fin plate in bearing<br>Fin plate in tension (block tearing)<br>Fin plate in tension (net section)<br>Beam web in bearing | $V_{Rd,11}$ ate connection is       Joint shear $N_{Rd,u,1}$ $N_{Rd,u,2}$ $N_{Rd,u,3}$ $N_{Rd,u,4}$ $N_{Rd,u,5}$                                     | 196 kN         resistance         321 kN         425 kN         743 kN         550 kN         255 kN |   |  |  |

|                                                                 | Job No.   | CDS164                                       |            | Sheet | 1 of | 11    | Rev      |  |  |  |  |
|-----------------------------------------------------------------|-----------|----------------------------------------------|------------|-------|------|-------|----------|--|--|--|--|
|                                                                 | Job Title | Worked examples to the Eurocodes with UK NA  |            |       |      |       |          |  |  |  |  |
|                                                                 | Subject   | Subject Example 16 - Column splice – Bearing |            |       |      |       |          |  |  |  |  |
| Silwood Park, Ascot, Berks SL5 7QN<br>Telephone: (01344) 636525 |           |                                              |            |       |      |       |          |  |  |  |  |
| Fax: (01344) 636570                                             | Client    | Client Made by M                             |            |       |      | Feb   | 2009     |  |  |  |  |
| CALCULATION SHEET                                               |           | 501                                          | Checked by | DGB   | Date | Jul 2 | 2009     |  |  |  |  |
| 16 Column splice – Bearing                                      |           |                                              |            |       |      | rence | s are to |  |  |  |  |

*BŠ EN 1993-1-8:* 2005, including its


National Annex, unless otherwise

stated.

## Column splice – Bearing 16

## 16.1 Scope

Verify the adequacy of the column bearing splice shown in Figure 16.1 that connects a 254  $\times$  254  $\times$  73 UKC (upper section) to a 305  $\times$  305  $\times$  118 UKC (lower section).



170

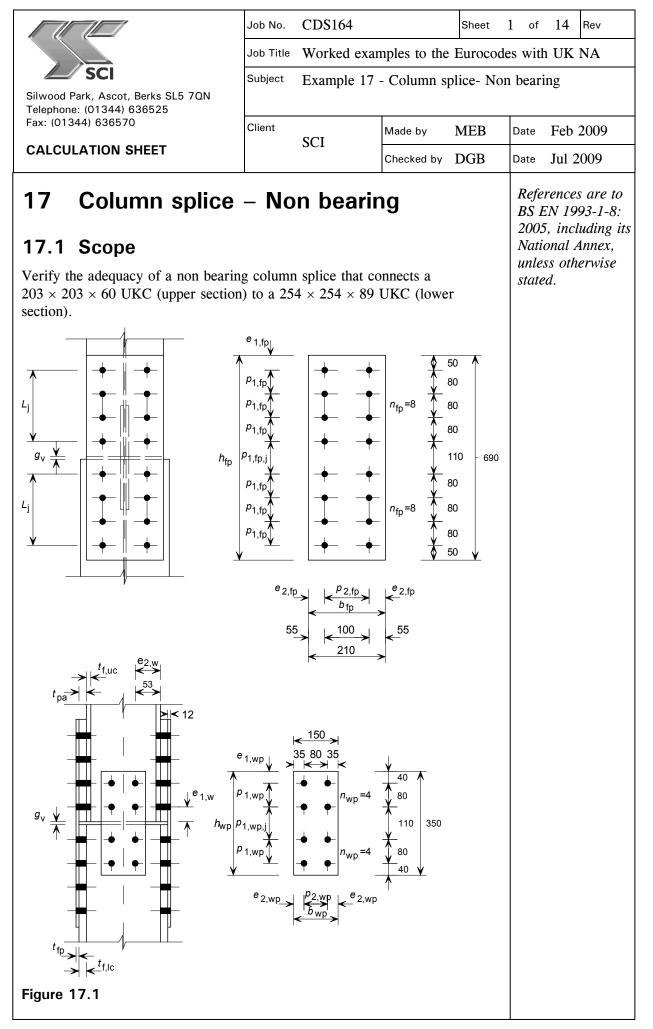
| Example 16 - Column splice - Bearing                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                               | Sheet 2                          | 2 of 11                      | Rev    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|--------|
| <ul> <li>Example 10 - Column splice - Bearing</li> <li>The design aspects covered in this exam</li> <li>Determination of tying force to be respective of the splice to be respective.</li> <li>Continuity of column stiffness at splice to compress</li> <li>Resistance of the splice to compress</li> <li>Resistance of the splice to horizonta</li> <li>Design of the welds</li> <li>Tying resistance <ul> <li>Bolts in tension</li> <li>Punching failure of bolts</li> </ul> </li> </ul> | ple are:<br>esisted by the column splice<br>ice location<br>ion and moment                                                                                                    | Sheet 2                          |                              | Kev    |
| <ul><li>Cap and base plates in bending</li><li>Weld in tension.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                               |                                  |                              |        |
| 16.2 Joint data and section                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on properties                                                                                                                                                                 |                                  |                              |        |
| $254 \times 254 \times 73$ UKC in S275 steel                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                               |                                  | P363                         |        |
| Depth<br>Width<br>Thickness of the web<br>Thickness of the flange<br>Depth between fillets                                                                                                                                                                                                                                                                                                                                                                                                  | $h_{uc} = 254.1 \text{ mm}$<br>$b_{uc} = 254.6 \text{ mm}$<br>$t_{w,uc} = 8.6 \text{ mm}$<br>$t_{f,uc} = 14.2 \text{ mm}$<br>$d_{uc} = 200.3 \text{ mm}$                      |                                  |                              |        |
| Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $A_{\rm uc} = 93.1 \ \rm cm^2$                                                                                                                                                |                                  |                              |        |
| For buildings that will be built in the UI strength ( $f_y$ ) and the ultimate strength ( $f_t$ obtained from the product standard. Will nominal value should be used.<br>For S275 steel and $t \le 16$ mm                                                                                                                                                                                                                                                                                  | ) for structural steel should be                                                                                                                                              | those                            | BS EN 1<br>NA.2.4<br>BS EN 1 |        |
| Yield strength<br>Ultimate tensile strength                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $f_{y,uc} = R_{eH} = 275 \text{ N/mm}$<br>$f_{u,uc} = R_{m} = 410 \text{ N/mm}$                                                                                               | n <sup>2</sup><br>n <sup>2</sup> | Table 7                      |        |
| Lower column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                               |                                  |                              |        |
| $305 \times 305 \times 118$ UKC in S275 steel<br>Depth<br>Width<br>Thickness of the web<br>Thickness of the flange<br>Depth between fillets                                                                                                                                                                                                                                                                                                                                                 | $h_{\rm Lc} = 314.5 \text{ mm}$<br>$b_{\rm Lc} = 307.4 \text{ mm}$<br>$t_{\rm w,Lc} = 12.0 \text{ mm}$<br>$t_{\rm f,Lc} = 18.7 \text{ mm}$<br>$d_{\rm Lc} = 246.7 \text{ mm}$ |                                  | P363                         |        |
| Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $A_{\rm Lc} = 150.0 \ \rm cm^2$                                                                                                                                               |                                  |                              |        |
| For S275 steel and $16 < t \le 40$ mm<br>Yield strength<br>Ultimate tensile strength                                                                                                                                                                                                                                                                                                                                                                                                        | $f_{y,Lc} = R_{eH} = 265 \text{ N/mi}$<br>$f_{u,Lc} = R_m = 410 \text{ N/mi}$                                                                                                 |                                  | BS EN 1<br>Table 7           | 0025-2 |

| Example 16 - Column splice - Bearing                                                                                                                                                                                                                                                  |                                                             |                                                                                                                             | Sheet                        | 3 of          | 11    | Rev     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------|-------|---------|
| Cap and base plates                                                                                                                                                                                                                                                                   |                                                             |                                                                                                                             |                              |               |       |         |
| $315 \times 308 \times 16$ mm plate in S275 steel                                                                                                                                                                                                                                     |                                                             |                                                                                                                             |                              |               |       |         |
| Depth<br>Width<br>Thickness of plate                                                                                                                                                                                                                                                  | $egin{array}{l} h_{ m p} \ b_{ m p} \ t_{ m p} \end{array}$ |                                                                                                                             |                              |               |       |         |
| Diameter of bolt holes for M20 bolts                                                                                                                                                                                                                                                  | $d_0$                                                       | = 22 mm                                                                                                                     |                              |               |       |         |
| For S275 steel and $t \le 16$ mm<br>Yield strength<br>Ultimate tensile strength                                                                                                                                                                                                       | $f_{ m y,p} \ f_{ m u,p}$                                   |                                                                                                                             |                              | BS E<br>Table |       | 0025-2  |
| In the major axis (y-y)                                                                                                                                                                                                                                                               |                                                             |                                                                                                                             |                              |               |       |         |
| Distance between bolts<br>Plate edge to first bolt row                                                                                                                                                                                                                                | $p_1 \\ e_1$                                                | = 140 mm<br>= 87 mm                                                                                                         |                              |               |       |         |
| In the minor axis (z-z)                                                                                                                                                                                                                                                               |                                                             |                                                                                                                             |                              |               |       |         |
| Distance between bolts<br>Plate edge to first bolt line                                                                                                                                                                                                                               | $p_2 e_2$                                                   | = 120 mm<br>= 94 mm                                                                                                         |                              |               |       |         |
| Bolts                                                                                                                                                                                                                                                                                 |                                                             |                                                                                                                             |                              |               |       |         |
| Non pre-loaded, M20 Class 8.8 bolts                                                                                                                                                                                                                                                   |                                                             |                                                                                                                             |                              |               |       |         |
| Diameter of the shank<br>Tensile stress area                                                                                                                                                                                                                                          | $d A_{\rm s}$                                               | = 20  mm<br>= 245 mm <sup>2</sup>                                                                                           |                              | P363          | 8 Pag | e C-306 |
| Yield strength<br>Ultimate tensile strength                                                                                                                                                                                                                                           | $f_{ m yb} \ f_{ m ub}$                                     |                                                                                                                             |                              | Table         | e 3.1 |         |
| <b>16.2.1 Connection category</b><br>The connection is category A; bearing type with non preloaded bolts.                                                                                                                                                                             |                                                             |                                                                                                                             |                              |               |       |         |
| 16.3 Design forces at Ultir                                                                                                                                                                                                                                                           |                                                             |                                                                                                                             |                              |               |       |         |
| For persistent and transient design situal<br>Design compression force due to permane<br>Design compression force due to variable<br>Total design axial compressive force<br>Design bending moment (due to permanent<br>variable loads)<br>Shear force (due to permanent and variable | ent acti<br>action<br>nt and                                | ons $N_{\rm Ed,G} = 825  \rm k$<br>s $N_{\rm Ed,Q} = 942  \rm k$<br>$N_{\rm Ed} = 1767  \rm k$<br>$M_{\rm Ed} = 15  \rm kN$ | N<br>kN                      |               |       |         |
| For accidental design situations:<br>For framed buildings, the vertical tying for<br>equal to the largest design vertical force a<br>due to the combined permanent and varial<br>should not be combined with other perma<br>the structure. The partial factors on action              | applied<br>ble action<br>nent ar                            | to the column by a sin<br>ions. This accidental a<br>nd variable actions that                                               | gle floor<br>ction<br>act on | BS E<br>A.6(  |       | 991-1-7 |
| Here, the design force that is applied to the 460 kN. Therefore, the tensile tying force column splice is:                                                                                                                                                                            |                                                             |                                                                                                                             |                              |               |       |         |
| $N_{\rm Ed}$ = 460 kN                                                                                                                                                                                                                                                                 |                                                             |                                                                                                                             |                              |               |       |         |

| Example 16 - Column splice - Bearing Sh                                                                                                                                                                                                                                         | ieet 4 | of           | 11 Rev     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|------------|
| Example 16 - Column splice - Bearing Sh<br><b>16.4 Net tension</b><br>$V_{Ed}$<br>$V_{Ed}$                                                                                                                                                                                      | ieet 4 | of           | 11 Rev     |
| Figure 16.2<br>For the permanent and transient design situations, it should be determined whether any of the bolts will need to resist net tension due to the design f acting on the splice.<br>For there to be no net tensile force on any of the connecting bolts, the        |        |              |            |
| For there to be no net tensile force on any of the connecting borts, the following criteria should be met:<br>$M_{\rm Ed} \leq \frac{N_{\rm Ed,G}p_1}{2}$                                                                                                                       |        |              |            |
| $\frac{N_{\rm Ed,G} p_1}{2} = \frac{825 \times 140 \times 10^{-3}}{2} = 57.8 \text{ kNm}$                                                                                                                                                                                       |        |              |            |
| $M_{\rm Ed} = 15 \text{ kNm} < 57.8 \text{ kNm}$<br>Therefore, no net tension is present at the splice.                                                                                                                                                                         |        |              |            |
| 16.5 Partial factors for resistance                                                                                                                                                                                                                                             |        |              |            |
| 16.5.1 Structural steel                                                                                                                                                                                                                                                         |        |              |            |
| Table 2.1 of BS EN 1993-1-8 specifies the use of the partial factor $\gamma_{M2}$ for resistance of member cross sections, given in BS EN 1993-1-1, and for the resistance of bolts, rivets, pins, welds and plates in bearing. Here two values for $\gamma_{M2}$ are required. | ne     |              |            |
| For plates in bearing $\gamma_{M2} = 1.25$                                                                                                                                                                                                                                      |        | Table        | NA.1       |
| For the resistance of cross sections<br>$\gamma_{M2} = 1.1$                                                                                                                                                                                                                     |        |              | N 1993-1-1 |
| For tying resistance verification, $\gamma_{M,u} = 1.1$                                                                                                                                                                                                                         |        | <b>SN</b> 01 | 5          |
| 16.5.2 Bolts                                                                                                                                                                                                                                                                    |        |              |            |
| $\gamma_{M2} = 1.25$                                                                                                                                                                                                                                                            |        | Table        | NA.1       |
| For tying resistance verification, $\gamma_{M,u} = 1.1$                                                                                                                                                                                                                         |        | <b>SN</b> 01 | 5          |
|                                                                                                                                                                                                                                                                                 |        |              |            |

| Example 16 - Column splice - Bearing Sheet                                                                                                                       | 5 of 11              | Rev         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|
| 16.5.3 Welds                                                                                                                                                     |                      |             |
| $\gamma_{\rm M2} = 1.25$                                                                                                                                         | Table NA             | <b>A</b> .1 |
|                                                                                                                                                                  |                      |             |
| 16.6 Continuity of column stiffness at splice                                                                                                                    |                      |             |
| As the column bearing splice is located at a height of 600 mm above a floor<br>level in a braced steel frame, full continuity of stiffness through the splice is | Access-st<br>documen |             |
| not required.                                                                                                                                                    | uocumen              | 1 511025    |
|                                                                                                                                                                  |                      |             |
| 16.7 Resistance of the splice to compression and                                                                                                                 |                      |             |
| moment                                                                                                                                                           |                      |             |
| Consider the transfer of compressive forces in the flanges of the upper column to the flanges of the lower column.                                               |                      |             |
| If $t_{p,uc} + t_{p,lc} \ge \frac{h_{lc} - h_{uc}}{2}$ , the forces can be transferred directly in compression,                                                  |                      |             |
| within a 45° dispersal from the upper column.                                                                                                                    |                      |             |
| $t_{\rm p,uc} + t_{\rm p,lc} = 2 t_{\rm p} = 2 \times 16 = 32 \text{ mm}$                                                                                        |                      |             |
| $\frac{h_{\rm lc} - h_{\rm uc}}{2} = \frac{314.5 - 254.1}{2} = 30.2 \text{ mm} < 32 \text{ mm}$ therefore forces can be                                          |                      |             |
| 2 2<br>transferred in compression.                                                                                                                               |                      |             |
| (If this were not satisfied, the transverse compression on the web would need                                                                                    |                      |             |
| to be checked using 6.2.6.2 of BS EN 1993-1-8.)                                                                                                                  |                      |             |
| 16.8 Resistance of the splice to horizontal shear                                                                                                                |                      |             |
| 16.8.1 Bolts in shear                                                                                                                                            |                      |             |
| The shear resistance of a single bolt $(F_{v,Rd})$ is given by:                                                                                                  |                      |             |
| $F_{\rm v,Rd} = \frac{\alpha_{\rm v} f_{\rm ub} A}{\gamma_{\rm v v c}}$                                                                                          |                      |             |
| $\Gamma_{\rm v,Rd} = \frac{\gamma_{\rm M2}}{\gamma_{\rm M2}}$                                                                                                    | Table 3.4            | 1           |
| $\alpha_{\rm v}$ = 0.6 for class 8.8 bolts                                                                                                                       |                      |             |
| As the shear plane passes through the threaded part of the bolt:                                                                                                 |                      |             |
| $A = A_{\rm s} = 245 \text{ mm}^2$                                                                                                                               |                      |             |
| Therefore, the shear resistance of a single bolt with a single shear plane is:                                                                                   |                      |             |
| $F_{\rm v,Rd} = \frac{0.6 \times 800 \times 245}{1.25} \times 10^{-3} = 94.1 \text{ kN} / \text{ bolt}$                                                          |                      |             |
| 16.8.2 Cap and base plates in bearing                                                                                                                            |                      |             |
| The bearing resistance of a single bolt $(F_{b,Rd})$ is given by:                                                                                                |                      |             |
| $F_{b,Rd} = \frac{k_1 \alpha_b f_{u,p} dt_p}{\gamma_{M2}}$                                                                                                       | Table 3.4            | 1           |
| γ <sub>M2</sub>                                                                                                                                                  |                      | т           |
|                                                                                                                                                                  |                      |             |
|                                                                                                                                                                  |                      |             |

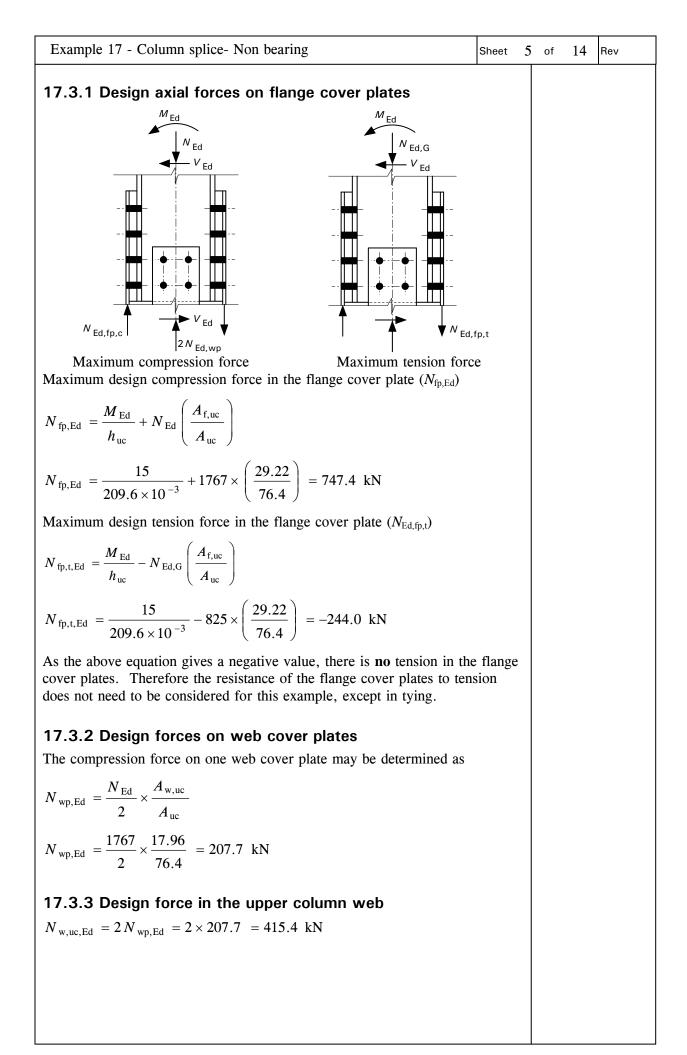
| Example 16 - Column splice - Bearing                                                                                                                                       | Sheet   | 6  | of   | 11    | Rev |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----|------|-------|-----|
| where:                                                                                                                                                                     |         |    |      |       |     |
| $\alpha_{\rm b}$ is the least value of $\alpha_{\rm b}$ ; $\frac{f_{\rm ub}}{f_{\rm u,p}}$ and 1.0                                                                         |         |    |      |       |     |
| For the end bolts, $\alpha_b$ is not applicable because the column flange is to the cap and base plates.                                                                   | s welde | ed |      |       |     |
| For inner bolts $\alpha_{b} = \frac{p_{1}}{3d_{o}} - \frac{1}{4} = \left(\frac{140}{3 \times 22}\right) - \left(\frac{1}{4}\right) = 1.81$                                 |         |    |      |       |     |
| $\frac{f_{\rm ub}}{f_{\rm u,p}} = \frac{800}{410} = 1.95$                                                                                                                  |         |    |      |       |     |
| Therefore, for both end and inner bolts, $a_{\rm b} = 1.0$                                                                                                                 |         |    |      |       |     |
| For edge bolts $k_1$ is the smaller of $2.8 \frac{e_2}{d_0} - 1.7$ and 2.5.                                                                                                |         |    |      |       |     |
| $2.8\frac{e_2}{d_0} - 1.7 = \left(\frac{2.8 \times 94}{22}\right) - 1.7 = 10.3 > 2.5$                                                                                      |         |    |      |       |     |
| For inner bolts $k_1$ is the smaller of $1.4 \frac{p_2}{d_0} - 1.7$ and 2.5.                                                                                               |         |    |      |       |     |
| $1.4 \frac{p_2}{d_0} - 1.7 = \left(\frac{1.4 \times 120}{22}\right) - 1.7 = 5.9 > 2.5$                                                                                     |         |    |      |       |     |
| Therefore, for both edge and inner bolts, $k_1 = 2.5$                                                                                                                      |         |    |      |       |     |
| Therefore the bearing resistance for a single bolt is:                                                                                                                     |         |    |      |       |     |
| $F_{b,Rd} = \frac{2.5 \times 1.0 \times 410 \times 20 \times 16}{1.25} \times 10^{-3} = 262 \text{ kN}$                                                                    |         |    | Tabl | e 3.4 | 4   |
| <i>Note: As the above equation uses the ultimate strength of the division plate value of 1.25 has been used for the partial factor</i> $\gamma_{M2}$ (plates in bearing Sh |         |    |      |       |     |
| 16.8.3 Resistance of a group of bolts                                                                                                                                      |         |    |      |       |     |
| The shear resistance of a single bolt with a single shear plane is:                                                                                                        |         |    | Shee | et 5  |     |
| $F_{\rm v,Rd} = 94.1 \ \rm kN$                                                                                                                                             |         |    |      |       |     |
| The bearing resistance for a single bolt is:<br>$F_{b,Rd} = 262 \text{ kN}$                                                                                                |         |    |      |       |     |
| As $F_{v,Rd} < F_{b,Rd}$ the resistance of the group of four bolts in the splice is determined as:                                                                         | S       |    | 3.7( | 1)    |     |
| $4F_{\rm v,Rd} = 4 \times 94.1 = 376 \text{ kN}$                                                                                                                           |         |    |      |       |     |
| Therefore, the resistance of the splice to horizontal shear is:<br>$V_{\rm Rd} = 376 \text{ kN}$                                                                           |         |    |      |       |     |
| $\frac{V_{\rm Ed}}{V_{\rm Rd}} = \frac{8}{376} = 0.02 < 1.0$                                                                                                               |         |    |      |       |     |
| Therefore the resistance of the splice to horizontal shear is adequate.                                                                                                    |         |    |      |       |     |


| Example 16 - Column splice - Bearing                                                                                                                                                                                             | Sheet   | 7 | of    | 11            | Rev         |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|-------|---------------|-------------|---|
| 16.9 Weld design                                                                                                                                                                                                                 |         |   |       |               |             |   |
| BS EN 1993-1-8 presents two methods for determining the resistance of weld, the directional method (more exact) and the simplified method.                                                                                       | a fille | t |       |               |             |   |
| The simplified method for calculating the design resistance of the fillet v<br>used here.                                                                                                                                        | weld is |   |       |               |             |   |
| <b>16.9.1 Resistance to horizontal shear</b><br>Verify that:                                                                                                                                                                     |         |   |       |               |             |   |
| $\frac{V_{\rm Ed}}{V_{\rm w,Rd}} \le 1$                                                                                                                                                                                          |         |   |       |               |             |   |
| The design weld resistance per unit length,                                                                                                                                                                                      |         | 4 | 4.5.3 | 3.3(2         | )           |   |
| $F_{\rm w,Rd} = f_{\rm vw,d} a$                                                                                                                                                                                                  |         |   |       |               |             |   |
| where:                                                                                                                                                                                                                           |         |   |       |               |             |   |
| $f_{\rm vw,d} = \frac{f_{\rm u} / \sqrt{3}}{\beta_{\rm w} \gamma_{\rm M2}}$                                                                                                                                                      |         | 4 | 4.5.3 | 8.3(3         | )           |   |
| For S275 steel, $\beta_{\rm w} = 0.85$                                                                                                                                                                                           |         | 1 | Fable | e 4.1         |             |   |
| $f_{\rm u}$ relates to the weaker part jointed by the weld, therefore for S275:                                                                                                                                                  |         | 4 | 4.5.3 | 8.2(6         | )           |   |
| $f_{\rm u} = 410 \text{ N/mm}^2$                                                                                                                                                                                                 |         | 5 | Shee  | t 2           |             |   |
| Hence $f_{\text{vw,d}} = \frac{410 / \sqrt{3}}{0.85 \times 1.25} = 223 \text{ N/mm}^2$                                                                                                                                           |         | 4 | 4.5.3 | 8.3(3         | )           |   |
| The throat thickness of the weld that corresponds to a leg of 6 mm is                                                                                                                                                            | 5:      |   |       |               |             |   |
| a = 4.2  mm                                                                                                                                                                                                                      |         |   |       |               |             |   |
| Therefore, the design weld resistance per mm is:                                                                                                                                                                                 |         | 4 | 4.5.3 | 3.3(2         | )           |   |
| $F_{\rm w,Rd} = 223 \times 4.2 = 937$ N/mm                                                                                                                                                                                       |         |   |       |               |             |   |
| Conservatively consider the effective weld length ( <i>l</i> ) to be:                                                                                                                                                            |         |   |       |               |             |   |
| $l = 2(b_{\rm uc} + d_{\rm uc}) = 2 \times (254.6 + 200.3) = 910 \text{ mm}$                                                                                                                                                     |         |   |       |               |             |   |
| $V_{\rm w,Rd} = F_{\rm w,Rd} \times l = 937 \times 910 \times 10^{-3} = 853 \rm kN$                                                                                                                                              |         |   |       |               |             |   |
| $\frac{V_{\rm Ed}}{V_{\rm w,Rd}} = \frac{8}{853} = 0.01 < 1.0$                                                                                                                                                                   |         |   |       |               |             |   |
| Therefore the design resistance of the weld with a leg length of 6 mm and throat thickness of 4.2 mm is satisfactory. (In this example, the critical verification for the weld is the resistance to tying, see Section 16.10.4.) | nd      |   |       |               |             |   |
| 16.10 Tying resistance                                                                                                                                                                                                           |         |   |       |               |             |   |
| BS EN 1993-1-8 does not give any guidance on tying resistance of connections. Therefore, the guidance given in the NCCI Access Steel document SN015 is used to determine the tying resistance of the end pla                     | ite.    |   |       |               |             |   |
| As large strains and large deformations are associated with tying resistant failure modes, SN015 recommends that ultimate tensile strengths ( $f_u$ ) be and the partial factor for tying $\gamma_{M,u}$ be taken as 1.1.        |         |   |       | ss-st<br>ment | eel<br>SN01 | 5 |

|                                                                                                                                                                                  |        |   |       |       | 1   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|-------|-------|-----|
| Example 16 - Column splice - Bearing                                                                                                                                             | Sheet  | 8 | of    | 11    | Rev |
| Bearing column splice material should be able to transmit 25% of the maximum compressive force ( $N_{Ed}$ ). Generally this force will be less the accidental tying force. Here: | an the |   | 6.2.7 | (14)  |     |
| 25% of $N_{\rm Ed}$ is 25% of 1767 = 442 kN                                                                                                                                      |        |   |       |       |     |
| and for tying $N_{\rm Ed} = 460  \rm kN$                                                                                                                                         |        |   | Shee  | t 3   |     |
| As 442 kN $<$ 460 kN the tying resistance verifications are critical so the verification does not need to be verified in this case.                                              | ne 25% |   |       |       |     |
| 16.10.1 Bolts in tension                                                                                                                                                         |        |   |       |       |     |
| Verify that:                                                                                                                                                                     |        |   |       |       |     |
| $\frac{N_{\rm Ed}}{N_{\rm Rd}} < 1.0$                                                                                                                                            |        |   |       |       |     |
| The tensile resistance of a single bolt is:                                                                                                                                      |        |   |       |       |     |
| $F_{\rm t,Rd} = \frac{k_2 f_{\rm ub} A_{\rm s}}{\gamma_{\rm M,u}}$                                                                                                               |        |   |       |       |     |
| As the bolts are not countersunk $k_2 = 0.9$                                                                                                                                     |        |   |       |       |     |
|                                                                                                                                                                                  |        |   |       |       |     |
| $F_{t,Rd} = \frac{k_2 f_{ub} A_s}{\gamma_{M,u}} = \frac{0.9 \times 800 \times 245}{1.1} \times 10^{-3} = 160 \text{ kN}$                                                         |        |   |       |       |     |
| Therefore, the tension resistance of all the bolts in the splice is:                                                                                                             |        |   |       |       |     |
| $N_{\rm Rd} = 4 \times 160 = 640 \ \rm kN$                                                                                                                                       |        |   |       |       |     |
| $\frac{N_{\rm Ed}}{N_{\rm Rd}} = \frac{460}{640} = 0.72 < 1.0$                                                                                                                   |        |   |       |       |     |
| Therefore, the tension resistance of the group of bolts is adequate.                                                                                                             |        |   |       |       |     |
| 16.10.2 Punching failure of bolts                                                                                                                                                |        |   |       |       |     |
| The punching shear failure for a single bolt is:                                                                                                                                 |        |   |       |       |     |
| $0.6 \pi d_{\rm m} t_{\rm p} f_{\rm u}$                                                                                                                                          |        |   | Table | e 3.4 |     |
| $B_{\rm p,Rd} = \frac{0.6 \pi d_{\rm m} t_{\rm p} f_{\rm u}}{\gamma_{\rm M2}}$                                                                                                   |        |   |       |       |     |
| Here $\gamma_{M2}$ must be replaced with $\gamma_{M,u}$ as this verification considers the ty force resistance, thus,                                                            | ing    |   |       |       |     |
| $0.6 \pi d_{\rm m} t_{\rm p} f_{\rm u}$                                                                                                                                          |        |   |       |       |     |
| $\boldsymbol{B}_{\mathrm{p,Rd}} = \frac{0.6 \pi d_{\mathrm{m}} t_{\mathrm{p}} f_{\mathrm{u}}}{\gamma_{\mathrm{M,u}}}$                                                            |        |   |       |       |     |
| $d_{\rm m}$ is the mean of the 'across points' and 'across flats' dimensions of th head or nut, whichever is the smaller.                                                        | e bolt |   | 1.5(1 | )     |     |
| The dimensions of the nut are the same as the head of the bolt, therefore determine $d_m$ for the bolt head only.                                                                | e      |   |       |       |     |
| $d_{\rm m} = \frac{e+s}{2}$                                                                                                                                                      |        |   |       |       |     |
| 2                                                                                                                                                                                |        |   |       |       |     |
|                                                                                                                                                                                  |        |   |       |       |     |
|                                                                                                                                                                                  |        |   |       |       |     |
|                                                                                                                                                                                  |        |   |       |       |     |

| Example 16 - Column splice - Bearing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sheet    | 9 of | 11             | Rev          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|----------------|--------------|
| $\overrightarrow{Figure 16.3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |      |                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |                |              |
| For an M20 bolt:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | P358 | 3              |              |
| e = 30.0  mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |      |                |              |
| s = 34.6  mm<br>Therefore,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |      |                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |                |              |
| $d_{\rm m} = \frac{30 + 34.6}{2} = 32.3 {\rm mm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |      |                |              |
| $B_{\rm p,Rd} = \frac{0.6 \times \pi \times 32.3 \times 16 \times 410}{1.1} \times 10^{-3} = 363 \text{ kN}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | Tabl | e 3.4          |              |
| Therefore, for the group of four bolts, the punching shear failure is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |      |                |              |
| $4 \times 363 = 1452 \text{ kN}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |      |                |              |
| $\frac{N_{\rm Ed}}{4B_{\rm p,Rd}} = \frac{460}{1452} = 0.32 < 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |      |                |              |
| Therefore, the resistance of the division plate to punching failure for four is adequate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ur bolts |      |                |              |
| 16.10.3 Cap and base plates in bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |      |                |              |
| The cap and base plate resistances should both be verified. However, we the cap and base plates have the same dimensions and the lower column thicker web than the upper column, the base plate is the critical case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |                |              |
| The approach used for the end plate (Example 14) is used here for the be plate alone as this is the critical case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dase     |      |                |              |
| An equivalent T-stub is used to represent the base plate in bending. The resistance of the base plate in bending $(N_{\text{Rd},u,2})$ is taken as the minimum for the resistance to Mode 1 failure (complete yielding of the base plate) Mode 2 failure (bolt failure with yielding of the base plate) failure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | value    |      |                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      | ess St<br>ment | eel<br>SN015 |
| $ \xrightarrow{0,8 a \sqrt{2}} \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |      |                |              |
| $\begin{array}{c c} & & & \\ \hline \\ \hline$ |          |      |                |              |
| $N_{\text{Rd},u,2}$ is the lesser value of $F_{\text{T},1,\text{Rd}}$ (Mode 1 failure) and $F_{\text{T},2,\text{Rd}}$ (Mode 2 failure).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2        |      |                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |                |              |

| Example 16 - Column splice - Bearing                                                                                                                                                                         | Sheet 1 | 0 of 11               | Rev |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|-----|
| Mode 1 failure $ \begin{pmatrix} 8n & -2e \end{pmatrix} M \dots n $                                                                                                                                          |         | Access S<br>document  |     |
| $F_{\rm T,1,Rd} = \frac{\left(8 n_{\rm p} - 2 e_{\rm w}\right) M_{\rm pl,1,Rd,u}}{2 m_{\rm p} n_{\rm p} - e_{\rm w} \left(m_{\rm p} + n_{\rm p}\right)}$                                                     |         |                       |     |
| where:                                                                                                                                                                                                       |         |                       |     |
| $e_{\rm w} = \frac{d_{\rm w}}{4}$                                                                                                                                                                            |         |                       |     |
| $d_{\rm w}$ is the diameter of the washer or width across the points of the nut                                                                                                                              | bolt or |                       |     |
| $d_{\rm w} = 37 \text{ mm}$                                                                                                                                                                                  |         |                       |     |
| $e_{\rm w} = \frac{37}{4} = 9.25 {\rm mm}$                                                                                                                                                                   |         |                       |     |
| $n_{\rm p}$ is the least value of $e_2$ ; $e_{2,c}$ ; $1.25m_{\rm p}$ .                                                                                                                                      |         |                       |     |
| $e_2 = 94.0 \text{ mm}$                                                                                                                                                                                      |         |                       |     |
| $e_{2,c}$ is not applicable in this example as the two plates have the dimensions.                                                                                                                           | e same  |                       |     |
| $m_{\rm p} = \frac{\left[p_3 - t_{\rm w,b1} - \left(2 \times 0.8 \times a \times \sqrt{2}\right)\right]}{2}$                                                                                                 |         | Access S<br>document  |     |
| $p_3 = p_2 = 120.0 \text{ mm}$                                                                                                                                                                               |         |                       |     |
| $t_{\rm w,b1} = t_{\rm w,uc} = 8.6  {\rm mm}$                                                                                                                                                                |         |                       |     |
| $m_{\rm p} = \frac{\left[120 - 8.6 - \left(2 \times 0.8 \times 4.2 \times \sqrt{2}\right)\right]}{2} = 50.95 \text{ mm}$                                                                                     |         |                       |     |
| $1.25m_{\rm p} = 1.25 \times 50.95 = 63.68 {\rm mm}$                                                                                                                                                         |         |                       |     |
| 63.68 mm < 94.0 mm                                                                                                                                                                                           |         |                       |     |
| Therefore, $n_{\rm p} = 63.68 \text{ mm}$                                                                                                                                                                    |         |                       |     |
| $M_{\rm pl,1,Rd,u} = \frac{1}{4} \frac{\sum l_{\rm eff,1} t_{\rm p}^2 f_{\rm u,p}}{\gamma_{\rm M,u}} \ \rm kNm$                                                                                              |         | Based on<br>Table 6.2 |     |
| where:                                                                                                                                                                                                       |         |                       |     |
| $\sum l_{\text{eff},1}$ is the effective length for Mode 1 and may be determine<br>following the method given in SCI P358 or conservatively in<br>taken as $\sum l_{\text{eff},1} = h_{\text{p}}$ .          |         |                       |     |
| Take $\sum l_{\text{eff},1} = h_{\text{p}}$ thus,                                                                                                                                                            |         |                       |     |
| $M_{\rm pl,1,Rd,u} = \frac{1}{4} \frac{h_{\rm p} t_{\rm p}^2 f_{\rm u,p}}{\gamma_{\rm M,u}} = \frac{1}{4} \times \left(\frac{314.5 \times 16^2 \times 410}{1.1}\right) \times 10^{-6} = 7.5 \text{ H}$       | xNm     |                       |     |
| Therefore,                                                                                                                                                                                                   |         |                       |     |
| $F_{\rm T,1,Rd} = \frac{\left[ (8 \times 63.68) - (2 \times 9.25) \right] \times 7.5 \times 10^3}{(2 \times 50.95 \times 63.68) - \left[ 9.25 \times \left( 50.95 + 63.68 \right) \right]} = 678 \text{ kN}$ |         |                       |     |


| Example 16 - Column splice - Bearing                                                                                                                                                                 | eet 1 | 1 of         | 11    | Rev          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|-------|--------------|
| Mode 2 failure                                                                                                                                                                                       |       |              | ss St | eel          |
|                                                                                                                                                                                                      |       | docu         | ment  | SN015        |
| $F_{\rm T,2,Rd} = \frac{2 M_{\rm pl,2,Rd,u} + n_{\rm p} \sum F_{\rm t,Rd,u}}{m_{\rm p} + n_{\rm p}}$                                                                                                 |       |              |       |              |
| where:                                                                                                                                                                                               |       |              |       |              |
| $\sum F_{t,Rd,u} = nF_{t,Rd,u}$                                                                                                                                                                      |       |              |       |              |
| $F_{t,Rd,u} = \frac{k_2 f_{ub} A_s}{\gamma_{M,u}}  \text{where } k_2 = 0.9$                                                                                                                          |       | Acce<br>docu |       | eel<br>SN015 |
| $F_{t,Rd,u} = \frac{0.9 \times 800 \times 245}{1.1} \times 10^{-3} = 160.4 \text{ kN}$                                                                                                               |       |              |       |              |
| $\sum F_{t,Rd,u} = nF_{t,Rd,u} = 4 \times 160.4 = 641.6 \text{ kN}$                                                                                                                                  |       |              |       |              |
| $M_{\rm pl,2,Rd,u} = \frac{1}{4} \frac{\sum l_{\rm eff,2} t_{\rm p}^2 f_{\rm u,p}}{\gamma_{\rm M,u}}$                                                                                                |       | Table        | e 6.2 |              |
| where:                                                                                                                                                                                               |       |              |       |              |
| $\sum l_{\text{eff},2}$ is the effective length for Mode 2 and may be determine<br>following the method given in SCI P358 or conservatively method as $\sum l_{\text{eff},2} = h_{\text{p}}$ . Thus, |       |              |       |              |
| $M_{\rm pl,2,Rd,u} = M_{\rm pl,1,Rd,u} = 7.28 \text{ kNm}$                                                                                                                                           |       |              |       |              |
| Therefore,                                                                                                                                                                                           |       |              |       |              |
| $F_{\rm T,2,Rd} = \frac{(2 \times 7.5 \times 10^6) + (63.68 \times 641.6 \times 10^3)}{(50.95 + 63.68) \times 10^3} = 487 \text{ kN}$                                                                |       |              |       |              |
| 487  kN < 678  kN                                                                                                                                                                                    |       |              |       |              |
| Therefore the resistance of the division plate in bending is the Mode 2 fai value $F_{T,2,Rd}$                                                                                                       | lure  |              |       |              |
| $N_{Rd,u,2} = 487 \text{ kN}$                                                                                                                                                                        |       |              |       |              |
| $\frac{N_{\rm Ed}}{N_{\rm Rd,u,2}} = \frac{460}{487} = 0.94 < 1.0$                                                                                                                                   |       |              |       |              |
| Therefore, the resistance of the division plate in bending is adequate.                                                                                                                              |       |              |       |              |
| 16.10.4 Welds in tension                                                                                                                                                                             |       |              |       |              |
| Verify that:                                                                                                                                                                                         |       |              |       |              |
| $\frac{N_{\rm Ed}}{N_{\rm w,Rd}} \le 1$                                                                                                                                                              |       |              |       |              |
| $N_{\rm w,Rd} = F_{\rm w,Rd} \times l = 957 \times 910 \times 10^{-3} = 853 \text{ kN}$                                                                                                              |       | Shee         | t 7   |              |
| $\frac{N_{\rm Ed}}{N_{\rm w,Rd}} = \frac{460}{853} = 0.53 < 1$                                                                                                                                       |       |              |       |              |
| Therefore the design resistance of the weld with a leg length of 6 mm and throat thickness of 4.2 mm is adequate.                                                                                    | l     |              |       |              |



| Example 17 - Column splice- Non bearing                                                                                                                                                                                                                                                                                                                                                                                          | ngSh                                                                                                                                                                                                      | eet 2    | of             | 14 Rev         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|----------------|
| <ul> <li>The design aspects covered in this exampl</li> <li>Calculation of forces for connection co</li> <li>Resistance of the splice <ul> <li>Flange cover plates</li> <li>Flange cover plate bolt group</li> <li>Web cover plate bolt group</li> <li>Web cover plate bolt group</li> <li>Upper column web bolt group.</li> </ul> </li> </ul>                                                                                   |                                                                                                                                                                                                           |          |                |                |
| <b>17.2 Joint details and sect</b><br><b>Upper column</b><br>$203 \times 203 \times 60$ UKC in S355 steel<br>Depth<br>Width<br>Thickness of the web<br>Thickness of the flange<br>Root radius<br>Area                                                                                                                                                                                                                            | ion properties<br>$h_{uc} = 209.6 \text{ mm}$<br>$b_{uc} = 205.8 \text{ mm}$<br>$t_{w,uc} = 9.4 \text{ mm}$<br>$t_{f,uc} = 14.2 \text{ mm}$<br>$r_{uc} = 10.2 \text{ mm}$<br>$A_{uc} = 76.4 \text{ cm}^2$ |          | P363           |                |
| Area of flange<br>$A_{f,uc} = b_{uc} t_{f,uc} = 205.8 \times 14.2 = 29.22$ of<br>Area of web<br>$A_{w,uc} = A_{uc} - 2A_{f,uc} = 76.4 - 29.22 = 1$<br>For S355 steel<br>Yield strength ( $t \le 16$ mm)<br>Ultimate tensile strength (3 mm $\le t \le 100$                                                                                                                                                                       | 7.96 cm <sup>2</sup><br>$f_{y,uc} = R_{eH} = 355 \text{ N/}$                                                                                                                                              |          | BS EN<br>Table | N 10025-2<br>7 |
| In the direction of load transfer (1)<br>End of upper column to first bolt row on or<br>Pitch between bolt rows on column web<br>In the direction perpendicular to load trans<br>Edge of upper column to first bolt line on<br>Pitch between bolt lines on column web<br><b>Lower column</b><br>$254 \times 254 \times 89$ UKC in S355 steel<br>Depth<br>Width<br>Thickness of the web<br>Thickness of the flange<br>Root radius | $p_{1,w} = p_{1,wp} = 80$                                                                                                                                                                                 | mm<br>mm | P363           |                |

| Example 17 - Column splice- Non beari                                                                                                                                | ing Sheet                                                                                      | 3 of 14 Rev              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------|
| For S355 steel<br>Yield strength (16 mm < $t \le 40$ mm)<br>Ultimate tensile strength (3 mm $\le t \le 100$                                                          | $f_{y,lc} = R_{eH} = 345 \text{ N/mm}^2$<br>0 mm) $f_{u,lc} = R_m = 470 \text{ N/mm}^2$        |                          |
| The width and thickness guidance for the the Access Steel NCCI document SN024                                                                                        |                                                                                                | 1                        |
| The edge, end and spacing dimensions cominimum values given in Table 3.3 of B                                                                                        |                                                                                                |                          |
| Vertical gap between column ends                                                                                                                                     | $g_{\rm v} = 10 {\rm mm}$                                                                      |                          |
| Flange cover plates                                                                                                                                                  |                                                                                                |                          |
| $210 \times 690 \times 12$ in S355 steel                                                                                                                             |                                                                                                |                          |
| Height<br>Width<br>Thickness                                                                                                                                         | $h_{\rm fp} = 690 \text{ mm}$<br>$b_{\rm fp} = 210 \text{ mm}$<br>$t_{\rm fp} = 12 \text{ mm}$ |                          |
| For buildings that will be built in the UK strength $(f_y)$ and the ultimate strength $(f_u)$ obtained from the product standard. When nominal value should be used. | t, the nominal values of the yield<br>for structural steel should be those                     | BS EN 1993-1-1<br>NA.2.4 |
| For S355 steel<br>Yield strength ( $t \le 16$ mm)<br>Ultimate tensile strength (3 mm $\le t \le 100$                                                                 | $f_{y,fp} = R_{eH} = 355 \text{ N/mm}^2$<br>0 mm) $f_{u,fp} = R_m = 470 \text{ N/mm}^2$        |                          |
| Number of bolts between one flange cover plate and upper column                                                                                                      | $n_{\rm fp} = 8$                                                                               |                          |
| Direction of load transfer (1)                                                                                                                                       |                                                                                                |                          |
| Plate edge to first bolt row                                                                                                                                         | $e_{1,\mathrm{fp}} = 50 \mathrm{mm}$                                                           |                          |
| Pitch between bolt rows<br>Pitch between bolt rows (across joint)                                                                                                    | $p_{1,\text{fp}} = 80 \text{ mm}$<br>$p_{1,\text{fp},\text{j}} = 110 \text{ mm}$               |                          |
| Direction perpendicular to load transfer (                                                                                                                           |                                                                                                |                          |
| Plate edge to first bolt line                                                                                                                                        | $e_{2,fp} = 55 \text{ mm}$                                                                     |                          |
| Pitch between bolt lines                                                                                                                                             | $p_{2,\rm fp} = 100 \ \rm mm$                                                                  |                          |
| Flange packs                                                                                                                                                         |                                                                                                |                          |
| $340 \times 210 \times 25$ in S355 steel                                                                                                                             |                                                                                                |                          |
| Depth                                                                                                                                                                | $h_{\rm pa}$ = 340 mm                                                                          |                          |
| Width                                                                                                                                                                | $b_{\rm pa} = 210 \text{ mm}$                                                                  |                          |
| Thickness                                                                                                                                                            | $t_{\rm pa} = 25 \ {\rm mm}$                                                                   |                          |
| Web cover plates                                                                                                                                                     |                                                                                                |                          |
| $350 \times 150 \times 8$ in S355 steel                                                                                                                              |                                                                                                |                          |
| Height                                                                                                                                                               | $h_{\rm wp} = 350 \text{ mm}$                                                                  |                          |
| Width                                                                                                                                                                | $b_{\rm wp} = 150 \text{ mm}$                                                                  |                          |
| Thickness                                                                                                                                                            | $t_{\rm wp} = 8 \text{ mm}$                                                                    |                          |
|                                                                                                                                                                      |                                                                                                |                          |
|                                                                                                                                                                      |                                                                                                |                          |
|                                                                                                                                                                      |                                                                                                |                          |

| Example 17 Column online Non bearing                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   | Chart 4 | of 14               | Devi   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|--------|
| Example 17 - Column splice- Non bearing                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   | Sheet 4 | of 14               | Rev    |
| For S275 steel<br>Yield strength ( $t \le 16$ mm)<br>Ultimate tensile strength (3 mm $\le t \le 100$ mm)                                                                                                                                                                                                                                                                                                               | $f_{y,wp} = R_{eH} = 355 \text{ M}$<br>m) $f_{u,wp} = R_m = 470 \text{ M}$                                                                                        |         | BS EN 10<br>Table 7 | 0025-2 |
| Number of bolts between web cover plate an                                                                                                                                                                                                                                                                                                                                                                             | nd upper column $n_{\rm wp} = 4$                                                                                                                                  |         |                     |        |
| Pitch between bolt rows $p$ Pitch between bolt rows (across joint) $p$ In the direction perpendicular to load transfePlate edge to first bolt line $e$                                                                                                                                                                                                                                                                 | $f_{1,wp} = 40 \text{ mm}$<br>$f_{1,wp} = 80 \text{ mm}$<br>$f_{1,wp,j} = 110 \text{ mm}$<br>$f_{2,wp} = 35 \text{ mm}$<br>$f_{2,wp} = 80 \text{ mm}$             |         |                     |        |
| Web packs                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                   |         |                     |        |
| When the connected members have significant<br>packs should be provided. Here the different<br>packs are not required.                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                 |         |                     |        |
| Bolts                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                   |         |                     |        |
| M24 Class 8.8                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                   |         |                     |        |
| Diameter of the shank d                                                                                                                                                                                                                                                                                                                                                                                                | $A_s = 353 \text{ mm}^2$<br>A = 24  mm<br>$A_0 = 26 \text{ mm}$                                                                                                   |         | P363 C-3            | 06     |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                   |         | Table 3.1           |        |
| 17.2.2 Connection category                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                   |         |                     |        |
| The bolted connection uses non-preloaded bo<br>bolted connection.                                                                                                                                                                                                                                                                                                                                                      | olts i.e. Category A: Bearin                                                                                                                                      | g type  | 3.4.1(1)            |        |
| 17.3 Design forces at ULS                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                   |         |                     |        |
| Design actions are taken from Example 16<br>For persistent and transient design situations<br>Design compression force due to permanent<br>Design compression force due to variable loa<br>Total design compression force<br>Design bending moment (due to permanent a<br>variable loads)<br>Shear force (due to permanent and variable loa<br>For accidental design situations (tying resista<br>Design tension force | load $N_{Ed,G} = 825 \text{ kN}$<br>ad $N_{Ed,Q} = 942 \text{ kN}$<br>$N_{Ed} = 1767 \text{ kN}$<br>and $M_{Ed} = 15 \text{ kNm}$<br>ads) $V_{Ed} = 8 \text{ kN}$ |         |                     |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                   |         |                     |        |

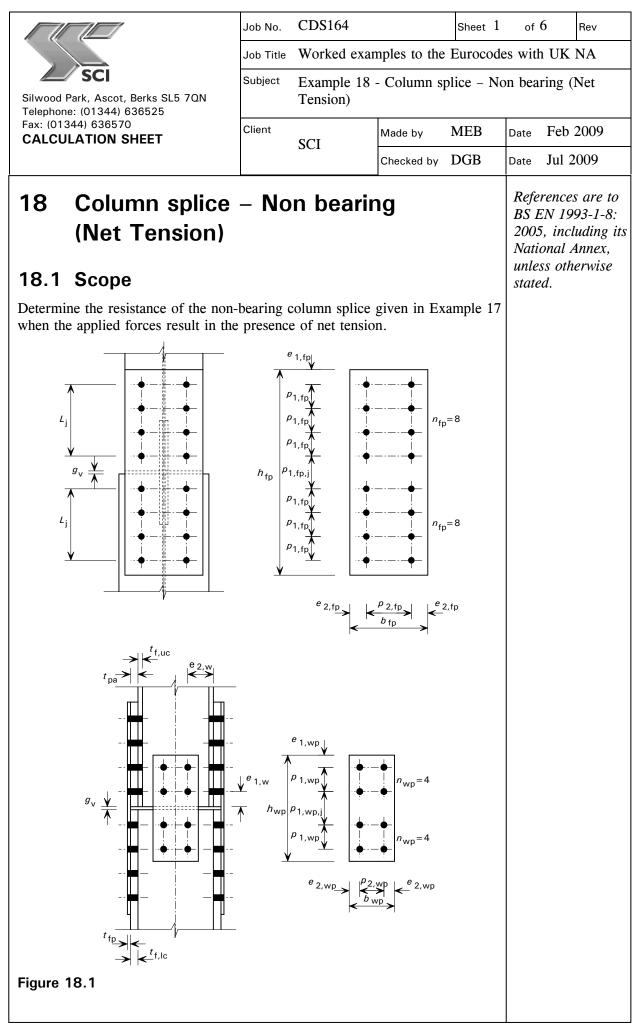


| Example 17 - Column splice- Non bearing                                                                                                                | Sheet | 6 | of 14                               | Rev      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---|-------------------------------------|----------|
| 17.4 Partial factors for resistance                                                                                                                    |       |   |                                     |          |
| <b>17.4.1 Structural steel</b><br>$\gamma_{M1} = 1.0$<br>For the bearing resistance of plates<br>$\gamma_{M2} = 1.25$<br><b>17.4.2 Bolts</b>           |       |   | BS EN 19<br>NA.2.15<br>Table NA     | 1        |
| $\gamma_{M2} = 1.25$                                                                                                                                   |       |   | Table NA                            | .1       |
| 17.5 Resistance of connection                                                                                                                          |       |   |                                     |          |
| 17.5.1 Flange cover plates                                                                                                                             |       |   |                                     |          |
| The design resistance of the flange cover plates in compression $(N_{\text{Rd,fp,c}})$ be determined from BS EN 1993-1-1.                              | ) may |   |                                     |          |
| Local buckling between the bolts need not be considered if,                                                                                            |       |   | Note 2 Ta                           | able 3.3 |
| $\frac{p_{1,\mathrm{fp},j}}{t_{\mathrm{fp}}} \le 9\varepsilon$                                                                                         |       |   |                                     |          |
| $\varepsilon = 0.81$                                                                                                                                   |       |   | Sheet 6                             |          |
| $9\varepsilon = 7.29$                                                                                                                                  |       |   | Sheet 6                             |          |
| $\frac{p_{1, \text{fp}, j}}{t_{\text{fp}}} = \frac{110}{12} = 9.2 > 7.29$                                                                              |       |   |                                     |          |
| Therefore the buckling of the flange plate between the bolts must be considered.                                                                       |       |   |                                     |          |
| Verify,                                                                                                                                                |       |   |                                     |          |
| $\frac{N_{\rm fp,Ed}}{N_{\rm fp,b,Rd}} \le 1.0$                                                                                                        |       |   |                                     |          |
| $N_{\rm fp,b,Rd} = \frac{\chi A_{\rm fp} f_{\rm y,fp}}{\gamma_{\rm M1}}$                                                                               |       |   | BS EN 19<br>6.3.1.1(3)              |          |
| $A_{\rm fp} = b_{\rm fp} t_{\rm fp} = 210 \times 12 = 2520 \ {\rm mm}^2$                                                                               |       |   |                                     |          |
| $\chi = \frac{1}{\Phi + \sqrt{(\Phi^2 - \overline{\lambda}^2)}} \le 1.0$                                                                               |       |   | BS EN 19<br>Eq (6.49)               | 93-1-1   |
| where:                                                                                                                                                 |       |   |                                     |          |
| $\Phi = 0.5 + \left(1 + \alpha \left(\overline{\lambda} - 0.2\right) + \overline{\lambda}^2\right)$                                                    |       |   |                                     |          |
| $\overline{\lambda}$ is the slenderness for flexural buckling                                                                                          |       |   |                                     |          |
| $\overline{\lambda} = \sqrt{\frac{Af_y}{N_{cr}}} = \left(\frac{L_{cr}}{i}\right) \left(\frac{1}{\lambda_1}\right)$ (For Class 1, 2 and 3 cross-section | s)    |   | BS EN 19<br>6.3.1.3(1)<br>Eq (6.50) | )        |

| Example 17 - Column splice- Non bearing                                                                                                                            | Sheet ' | 7 of 14                | Rev    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|--------|
| $L_{\rm cr} = 0.6p_{1,\rm fp,j}$                                                                                                                                   |         | Note 2 to              |        |
| $L_{\rm cr} = 0.6  \mu_{1,\rm fp,j}$<br>$L_{\rm cr} = 0.6  \times  110  =  66   {\rm mm}$                                                                          |         | Table 3.3              |        |
| $\lambda_1 = 93.9\varepsilon$                                                                                                                                      |         |                        |        |
| $\varepsilon = \sqrt{\frac{235}{f_{y,fp}}} = \sqrt{\frac{235}{355}} = 0.81$                                                                                        |         |                        |        |
| $\lambda_1 = 93.9 \times 0.81 = 76.06$                                                                                                                             |         |                        |        |
| Slenderness for buckling about the minor axis (z-z)                                                                                                                |         |                        |        |
| $i_z = \frac{t_{\rm fp}}{\sqrt{12}} = \frac{12}{\sqrt{12}} = 3.46 \text{ mm}$                                                                                      |         |                        |        |
| $\overline{\lambda}_{z} = \left(\frac{L_{cr}}{i_{z}}\right) \left(\frac{1}{\lambda_{1}}\right) = \left(\frac{66}{3.46}\right) \left(\frac{1}{76.06}\right) = 0.25$ |         | BS EN 19<br>Eq (6.50)  | 93-1-1 |
| For a solid section in S355 steel use buckling curve 'c'                                                                                                           |         | BS EN 19<br>Table 6.2  | 93-1-1 |
| For buckling curve 'c' the imperfection factor is $\alpha = 0.49$                                                                                                  |         | BS EN 19<br>Table 6.1  | 93-1-1 |
| $\Phi = 0.5 \left[ 1 + \alpha \left( \overline{\lambda}_{z} - 0.2 \right) + \overline{\lambda}_{z}^{2} \right]$                                                    |         | BS EN 19<br>6.3.1.2(1) |        |
| $= 0.5 \times \left[ 1 + 0.49 \times (0.25 - 0.2) + 0.25^{2} \right] = 0.54$                                                                                       |         |                        |        |
| $\chi = \frac{1}{\varphi + \sqrt{(\varphi^2 - \overline{\lambda}_z^2)}} = \frac{1}{0.54 + \sqrt{(0.54^2 - 0.25^2)}} = 0.98$                                        |         | BS EN 19<br>Eq (6.49)  | 93-1-1 |
| 0.98 < 1.0                                                                                                                                                         |         |                        |        |
| Therefore,                                                                                                                                                         |         |                        |        |
| $\chi = 0.98$                                                                                                                                                      |         |                        |        |
| Therefore,                                                                                                                                                         |         |                        |        |
| $N_{\rm fp,b,Rd} = \frac{\chi A_{\rm fp} f_{\rm y,fp}}{\gamma_{\rm M1}} = \frac{0.98 \times 2520 \times 355}{1.0} \times 10^{-3} = 877 \text{ kN}$                 |         |                        |        |
| $\frac{N_{\rm fp,Ed}}{N_{\rm fp,b,Rd}} = \frac{747.4}{877} = 0.85 < 1.0$                                                                                           |         |                        |        |
| Therefore the design resistance of the flange plate is adequate.                                                                                                   |         |                        |        |
| 17.5.2 Flange cover plate bolt group                                                                                                                               |         |                        |        |
| The design resistance of the bolt group $(V_{\text{Rd,fp}})$ is                                                                                                    |         | 3.7(1)                 |        |
| $V_{\rm fp,Rd} = \sum F_{\rm b,Rd}$ if $F_{\rm v,Rd} \ge (F_{\rm b,Rd})_{\rm max}$                                                                                 |         |                        |        |
| $V_{\rm fp,Rd} = n_{\rm fp} (F_{\rm b,Rd})_{\rm min}$ if $(F_{\rm b,Rd})_{\rm min} \leq F_{\rm v,Rd} < (F_{\rm b,Rd})_{\rm max}$                                   |         |                        |        |
| $V_{\rm fp,Rd} = n_{\rm fp} F_{\rm v,Rd} \qquad \text{if } \left(F_{\rm b,Rd}\right)_{\rm min} > F_{\rm v,Rd}$                                                     |         |                        |        |
|                                                                                                                                                                    |         |                        |        |

| Example 17 - Column splice- Non bearing                                                                                                       | Sheet        | 8  | of    | 14    | Rev |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------|----|-------|-------|-----|
| where:                                                                                                                                        |              |    |       |       | 1   |
| $F_{\rm b,Rd}$ is the design bearing resistance of a single bolt                                                                              |              |    |       |       |     |
| $F_{\rm v,Rd}$ is the design shear resistance of a single bolt.                                                                               |              |    |       |       |     |
| Bearing resistance of a single bolt                                                                                                           |              |    |       |       |     |
| The design bearing resistance of a single bolt in the flange cover plate (given by:                                                           | $(F_{b,Rd})$ | is | Table | e 3.4 |     |
| $F_{\rm b,Rd} = \frac{k_1 \alpha_{\rm b} f_{\rm u,p} d t_{\rm fp}}{\gamma_{\rm b,Rd}}$                                                        |              |    |       |       |     |
| In the direction of load transfer:                                                                                                            |              |    |       |       |     |
| $\alpha_{\rm b}$ is the least value of $\alpha_{\rm d}$ , $\frac{f_{\rm ub}}{f_{\rm u,p}}$ and 1.0                                            |              |    |       |       |     |
| For end bolts $\alpha_{d} = \frac{e_{1, fp}}{3d_0} = \frac{50}{3 \times 26} = 0.64$                                                           |              |    |       |       |     |
| For inner bolts $\alpha_{d} = \frac{p_{1, fp}}{3d_{0}} - \frac{1}{4} = \left(\frac{80}{3 \times 26}\right) - \left(\frac{1}{4}\right) = 0.78$ |              |    |       |       |     |
| $\frac{f_{\rm ub}}{f_{\rm u,fp}} = \frac{800}{470} = 1.70$                                                                                    |              |    |       |       |     |
| For end bolts 0.64 < 1.0 < 1.70 therefore, $\alpha_{b,end} = 0.64$                                                                            |              |    |       |       |     |
| For inner bolts 0.78 < 1.0 < 1.70 therefore, $\alpha_{\rm b,inner} = 0.78$                                                                    |              |    |       |       |     |
| Perpendicular to the direction of load transfer:                                                                                              |              |    |       |       |     |
| As there are only two vertical lines of bolts in the splice there are no inner bolts.                                                         | 0            |    |       |       |     |
| For edge bolts $k_1$ is the smaller of $2.8 \frac{e_{2,\text{fp}}}{d_0} - 1.7$ or 2.5.                                                        |              |    |       |       |     |
| $2.8\frac{e_{2,\text{fp}}}{d_{0}} - 1.7 = \left(\frac{2.8 \times 55}{26}\right) - 1.7 = 4.22$                                                 |              |    |       |       |     |
| 2.5 < 4.22                                                                                                                                    |              |    |       |       |     |
| Therefore, $k_1 = 2.5$                                                                                                                        |              |    |       |       |     |
| Hence, the bearing strengths for single bolts are,                                                                                            |              |    |       |       |     |
| End bolts $2.5 \times 0.64 \times 470 \times 24 \times 12$                                                                                    |              |    |       |       |     |
| $F_{b,Rd,end} = (F_{b,Rd})_{min} = \frac{2.5 \times 0.64 \times 470 \times 24 \times 12}{1.25} \times 10^{-3} = 173 \text{ kN}$               |              |    |       |       |     |
| Inner bolts                                                                                                                                   |              |    |       |       |     |
| $F_{b,Rd,inner} = (F_{b,Rd})_{max} = \frac{2.5 \times 0.78 \times 470 \times 24 \times 12}{1.25} \times 10^{-3} = 211 \text{ kN}$             |              |    |       |       |     |
|                                                                                                                                               |              |    |       |       |     |
|                                                                                                                                               |              |    |       |       |     |

| Example 17 - Column splice- Non bearing Sheet                                                                                                                                                                             | 9 of 14 Rev |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                                                                                                                                                                                                                           |             |
| Shear resistance of a single bolt                                                                                                                                                                                         |             |
| The design shear resistance of a single bolt in the flange cover plate $(F_{v,Rd})$ is given by:                                                                                                                          |             |
| $F_{\rm v,Rd} = \frac{\alpha_{\rm v} f_{\rm ub} A}{\gamma_{\rm M2}}$                                                                                                                                                      | Table 3.4   |
| As the packing between the flange of the upper column and the flange cover plate is thicker than one third of the nominal diameter of the bolt plate, $F_{v,Rd}$ should be multiplied by the reduction factor $\beta_p$ . | 3.6.1(12)   |
| Therefore,                                                                                                                                                                                                                |             |
| $F_{\rm v,Rd} = \beta_{\rm p} \frac{\alpha_{\rm v} f_{\rm ub} A}{\gamma_{\rm M2}}$                                                                                                                                        |             |
| where:                                                                                                                                                                                                                    |             |
| $\beta_{\rm p} = \frac{9d}{8d + 3t_{\rm fp,pa}}$ but $\beta \le 1.0$                                                                                                                                                      | Eq (3.3)    |
| $\beta_{\rm p} = \frac{9 \times 24}{(8 \times 24) + (3 \times 25)} = 0.81$                                                                                                                                                |             |
| $0.81 < 1.0$ therefore $\beta_p = 0.81$                                                                                                                                                                                   |             |
| For class 8.8 bolts,                                                                                                                                                                                                      | Table 3.4   |
| $\alpha_{\rm v} = 0.6$                                                                                                                                                                                                    |             |
| Where the shear passes through the threaded part of the bolt<br>$A = A_s = 353 \text{ mm}^2$                                                                                                                              |             |
| $F_{\rm v,Rd} = 0.81 \times \frac{0.6 \times 800 \times 353}{1.25} \times 10^{-3} = 110 \text{ kN}$                                                                                                                       |             |
| Long joint verification                                                                                                                                                                                                   |             |
| If $L_j > 15d$ , a reduction factor should be applied to the bolt resistances.                                                                                                                                            | 3.8(1)      |
| $L_{\rm j}$ is the joint length, here                                                                                                                                                                                     |             |
| $L_{\rm j} = 3p_{1,{\rm fp}} = 3 \times 80 = 240 {\rm mm}$                                                                                                                                                                |             |
| $15d = 15 \times 24 = 360 \text{ mm}$                                                                                                                                                                                     |             |
| As 240 mm $<$ 360 mm, <b>no reduction</b> in bolt resistance is required.                                                                                                                                                 |             |
| Resistance of the flange plate bolt group                                                                                                                                                                                 |             |
| As, $F_{v,Rd}$ (110 kN) < $(F_{b,Rd})_{min}$ (173 kN),                                                                                                                                                                    | 3.7(1)      |
| the resistance of the bolt group in the flange cover plate is:                                                                                                                                                            |             |
| $V_{\rm fp,Rd} = n_{\rm fp} F_{\rm v,Rd} = 8 \times 110 = 880 \rm kN$                                                                                                                                                     |             |
| $\frac{N_{\rm fp,Ed}}{V_{\rm fp,Rd}} = \frac{747}{880} = 0.85 < 1.0$                                                                                                                                                      |             |
| Therefore the resistance of the bolt group in the flange cover plate is adequate.                                                                                                                                         |             |


| Example 17 - Column splice- Non bearing                                                                                                                                     | Sheet | 10 of | 14                        | Rev         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|---------------------------|-------------|
| Note: Here the bearing resistance of the flange plate is more critical the bearing resistance of the column flanges, thus verifications are not require the column flanges. |       | or    |                           |             |
| 17.5.3 Web cover plate                                                                                                                                                      |       |       |                           |             |
| The design resistance of the web cover plate in compression $(N_{\rm fp,Rd})$ may determined from BS EN1993-1-1.                                                            | y be  |       |                           |             |
| Local buckling between the bolts need not be considered if,                                                                                                                 |       | Not   | e 2 Ta                    | able 3.3    |
| $\frac{p_{1,\text{fp},j}}{t_{\text{fp}}} \le 9\varepsilon$                                                                                                                  |       |       |                           |             |
| $9\varepsilon = 7.29$                                                                                                                                                       |       | Shee  | et 6                      |             |
| $\frac{p_{1,\text{wp},j}}{t_{\text{wp}}} = \frac{110}{8} = 13.75 > 7.2$                                                                                                     |       |       |                           |             |
| Therefore buckling of the flange plate between the bolts must be considered                                                                                                 | ered. |       |                           |             |
| Verify,                                                                                                                                                                     |       |       |                           |             |
| $\frac{N_{\rm wp,Ed}}{N_{\rm wp,b,Rd}} \le 1.0$                                                                                                                             |       |       |                           |             |
| $N_{\rm wp,b,Rd} = \frac{\chi A_{\rm fp} f_{\rm y,wp}}{\gamma_{\rm M1}}$                                                                                                    |       |       | EN19<br>1.1(3             | 93-1-1<br>) |
| $A_{\rm wp} = b_{\rm wp} t_{\rm wp} = 150 \times 8 = 1200 \rm{mm}^2$                                                                                                        |       |       |                           |             |
| $\chi = \frac{1}{\Phi + \sqrt{(\Phi^2 - \overline{\lambda}^2)}} \le 1.0$                                                                                                    |       |       | EN 19<br>(6.49)           | 993-1-1     |
| where:                                                                                                                                                                      |       |       |                           |             |
| $\Phi = 0.5 + \left[1 + \alpha \left(\overline{\lambda} - 0.2\right) + \overline{\lambda}^{2}\right]$                                                                       |       |       |                           |             |
| $\overline{\lambda}$ is the slenderness for flexural buckling                                                                                                               |       |       |                           |             |
| $\overline{\lambda} = \sqrt{\frac{Af_y}{N_{cr}}} = \left(\frac{L_{cr}}{i}\right) \left(\frac{1}{\lambda_1}\right)$ (For Class 1, 2 and 3 cross section                      | s)    | 6.3.  | EN 19<br>1.3(1)<br>(6.50) |             |
| As $p_{1,wp,j} = p_{1,fp,j}$ the buckling length,                                                                                                                           |       |       |                           |             |
| $L_{\rm cr} = 66 \text{ mm} \text{ (from Sheet 7)}$                                                                                                                         |       |       |                           |             |
| As $f_{y,wp} = f_{y,fp}$ , $\varepsilon = 0.81$ (from Sheet 6), thus                                                                                                        |       |       |                           |             |
| $\lambda_1 = 76.06 \text{ (from Sheet 7)}$                                                                                                                                  |       |       |                           |             |
| Slenderness for buckling about the minor axis (z-z)                                                                                                                         |       |       |                           |             |
| $i_z = \frac{t_{wp}}{\sqrt{12}} = \frac{8}{\sqrt{12}} = 2.31 \text{ mm}$                                                                                                    |       |       |                           |             |
|                                                                                                                                                                             |       |       |                           |             |

| Example 17 - Column splice- Non bearing Sheet 1                                                                                                                                                                                                                          | 1 of 14 Rev                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| $\overline{\lambda}_{z} = \left(\frac{L_{cr}}{i_{z}}\right) \left(\frac{1}{\lambda_{1}}\right) = \left(\frac{66}{2.31}\right) \left(\frac{1}{76.06}\right) = 0.38$                                                                                                       | BS EN 1993-1-1<br>Eq (6.50)  |
| For a solid section in S355 steel, use buckling curve 'c'                                                                                                                                                                                                                | BS EN 1993-1-1<br>Table 6.2  |
| For buckling curve 'c', the imperfection factor is $\alpha = 0.49$                                                                                                                                                                                                       | BS EN 1993-1-1<br>Table 6.1  |
| $\Phi = 0.5 \left[ 1 + \alpha \left( \overline{\lambda}_{z} - 0.2 \right) + \overline{\lambda}_{z}^{2} \right]$                                                                                                                                                          | BS EN 1993-1-1<br>6.3.1.2(1) |
| $= 0.5 \times \left[ 1 + 0.49 \times (0.38 - 0.2) + 0.38^{2} \right] = 0.62$                                                                                                                                                                                             |                              |
| $\chi = \frac{1}{\varphi + \sqrt{(\varphi^2 - \overline{\lambda}_z^2)}} = \frac{1}{0.62 + \sqrt{(0.62^2 - 0.38^2)}} = 0.90$                                                                                                                                              | BS EN 1993-1-1<br>Eq (6.49)  |
| 0.90 < 1.0                                                                                                                                                                                                                                                               |                              |
| Therefore,                                                                                                                                                                                                                                                               |                              |
| $\chi = 0.90$                                                                                                                                                                                                                                                            |                              |
| $N_{\rm wp,b,Rd} = \frac{0.9 \times 1200 \times 355}{1.0} \times 10^{-3} = 383 \text{ kN}$                                                                                                                                                                               |                              |
| $\frac{N_{\rm wp,Ed}}{N_{\rm wp,b,Rd}} = \frac{207.7}{383} = 0.54 < 1.0$                                                                                                                                                                                                 |                              |
| Therefore the design resistance of the flange plate is adequate.                                                                                                                                                                                                         |                              |
| The web cover plates should also be verified for combined bending, shear and axial force in accordance with clause 6.2.10 or 6.2.1 (5) of BS EN 1993-1-1. However, in this case the shear force is small and the interaction is judged to be satisfactory by inspection. |                              |
| 17.5.4 Web cover plate bolt group                                                                                                                                                                                                                                        |                              |
| Bearing resistance of a single bolt                                                                                                                                                                                                                                      |                              |
| The design bearing resistance of a single bolt in the web cover plate $(F_{b,Rd})$ is given by:                                                                                                                                                                          | Table 3.4                    |
| $F_{b,Rd} = \frac{k_1 \alpha_b f_{u,p} dt_{fp}}{\gamma_{M2}}$                                                                                                                                                                                                            |                              |
| In the direction of load transfer:                                                                                                                                                                                                                                       |                              |
| $\alpha_{\rm b}$ is the least value of $\alpha_{\rm d}$ , $\frac{f_{\rm ub}}{f_{\rm up}}$ and 1.0                                                                                                                                                                        |                              |
| For end bolts $\alpha_{d} = \frac{e_{1,wp}}{3d_{o}} = \frac{40}{3 \times 26} = 0.51$                                                                                                                                                                                     |                              |
| For inner bolts $\alpha_d = \frac{p_{1,wp}}{3d_o} - \frac{1}{4} = \left(\frac{80}{3 \times 26}\right) - \left(\frac{1}{4}\right) = 0.78$                                                                                                                                 |                              |
|                                                                                                                                                                                                                                                                          |                              |

| Example 17 - Column splice- Non bearing                                                                                                                 | Sheet | 12 | of    | 14             | Rev     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-------|----------------|---------|
|                                                                                                                                                         | Sneet |    |       | 14             | 1164    |
| $\frac{f_{\rm ub}}{f_{\rm u,wp}} = \frac{800}{470} = 1.70$                                                                                              |       |    |       |                |         |
| For end bolts $0.51 < 1.0 < 1.7$ , therefore, $\alpha_{b,end} = 0.51$                                                                                   |       |    |       |                |         |
| For inner bolts $0.78 < 1.0 < 1.7$ , therefore, $\alpha_{b,inner} = 0.78$                                                                               |       |    |       |                |         |
| Perpendicular to the direction of load transfer:                                                                                                        |       |    |       |                |         |
| As there are only two vertical lines of bolts in the splice, there inner bolts.                                                                         | are i | no |       |                |         |
| For edge bolts $k_1$ is the smaller of 2.8 $\frac{e_{2,\text{wp}}}{d_0}$ - 1.7 or 2.5.                                                                  |       |    |       |                |         |
| $2.8 \frac{e_{2,\text{wp}}}{d_{0}} - 1.7 = \frac{2.8 \times 35}{26} - 1.7 = 2.07$                                                                       |       |    |       |                |         |
| 2.07 < 2.5                                                                                                                                              |       |    |       |                |         |
| Therefore, $k_1 = 2.07$                                                                                                                                 |       |    |       |                |         |
| The bearing strengths for single bolts are:                                                                                                             |       |    |       |                |         |
| End bolts                                                                                                                                               |       |    |       |                |         |
| $F_{b,Rd,end} = (F_{b,Rd})_{min} \frac{2.07 \times 0.51 \times 470 \times 24 \times 8}{1.25} \times 10^{-3} = 76 \text{ kN}$                            |       |    |       |                |         |
| Inner bolts                                                                                                                                             |       |    |       |                |         |
| $F_{b,Rd,inner} = (F_{b,Rd})_{max} = \frac{2.07 \times 0.78 \times 470 \times 24 \times 8}{1.25} \times 10^{-3} = 117 \text{ kN}$                       |       |    |       |                |         |
| Shear resistance of a single bolt                                                                                                                       |       |    |       |                |         |
| The design shear resistance of a single bolt in the web cover plate ( $F_{v,Rd}$ given by:                                                              | d) is |    |       |                |         |
| $F_{\rm v,Rd} = \frac{\alpha_{\rm v} f_{\rm ub} A}{\gamma_{\rm M2}}$                                                                                    |       |    |       | EN 19<br>e 3.4 | 993-1-8 |
| As there is no packing between the web of the upper column and the we cover plate, the reduction factor $\beta_p$ is applied to $F_{v,Rd}$ . Therefore, | eb    |    |       | EN 19<br>1(12) | 993-1-8 |
| $F_{\rm v,Rd} = \frac{0.6 \times 800 \times 353}{1.25} \times 10^{-3} = 136 \text{ kN}$                                                                 |       |    |       |                |         |
| Long joint verification                                                                                                                                 |       |    |       |                |         |
| If $L_j > 15d$ a reduction factor should be applied to the bolt resistances.                                                                            |       |    | 3.8(2 | 1)             |         |
| Here,                                                                                                                                                   |       |    |       |                |         |
| $p_{1,\mathrm{wp}} = p_{1,\mathrm{jp}}$                                                                                                                 |       |    |       |                |         |
| Therefore, <b>no reduction</b> in bolt resistance is required (see verification of Sheet 9).                                                            | on    |    |       |                |         |
|                                                                                                                                                         |       |    |       |                |         |
|                                                                                                                                                         |       |    |       |                |         |
|                                                                                                                                                         |       |    |       |                |         |

| Example 17 - Column splice- Non bearing                                                                                                     | Sheet 1 | 3 of 14   | Rev |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-----|
| Resistance of the web cover plate bolt group                                                                                                |         |           |     |
| As, $(F_{b,Rd})_{max}$ (117 kN) < $F_{v,Rd}$ (136 kN),                                                                                      |         | 3.7(1)    |     |
| the resistance of the bolt group in the web cover plate is:                                                                                 |         |           |     |
| $V_{\rm wp,Rd} = \sum F_{\rm b,Rd} = (2 \times 76) + (2 \times 117) = 386 \text{ kN}$                                                       |         |           |     |
| $\frac{N_{\rm wp,Ed}}{V_{\rm wp,Rd}} = \frac{207.7}{386} = 0.54 < 1.0$                                                                      |         |           |     |
| Therefore the resistance of the bolt group in the web cover plate is ade                                                                    | quate.  |           |     |
| 17.5.5 Upper column web bolt group                                                                                                          |         |           |     |
| Bearing resistance of a single bolt                                                                                                         |         |           |     |
| The design bearing resistance of a single bolt in the web of the upper c $(F_{b,Rd})$ is given by:                                          | olumn   | Table 3.4 |     |
| $F_{\rm b,Rd} = \frac{k_1 \alpha_{\rm b} f_{\rm u,uc} d t_{\rm w,uc}}{\gamma_{\rm M2}}$                                                     |         |           |     |
| In the direction of load transfer:                                                                                                          |         |           |     |
| $\alpha_{\rm b}$ is the least value of $\alpha_{\rm d}, \ \frac{f_{\rm ub}}{f_{\rm u,uc}}$ and 1.0                                          |         |           |     |
| For end bolts $\alpha_{d} = \frac{e_{1,w}}{3d_{o}} = \frac{50}{3 \times 26} = 0.64$                                                         |         |           |     |
| For inner bolts $\alpha_{d} = \frac{p_{1,w}}{3d_{o}} - \frac{1}{4} = \left(\frac{80}{3 \times 26}\right) - \left(\frac{1}{4}\right) = 0.78$ |         |           |     |
| $\frac{f_{\rm ub}}{f_{\rm u,uc}} = \frac{800}{470} = 1.70$                                                                                  |         |           |     |
| For end bolts $0.64 < 1.0 < 1.7$ , therefore $\alpha_{b,end} = 0.64$                                                                        |         |           |     |
| For inner bolts $0.78 < 1.0 < 1.7$ , therefore $\alpha_{\text{b,inner}} = 0.78$                                                             |         |           |     |
| Perpendicular to the direction of load transfer:                                                                                            |         |           |     |
| For bolts in the web it can be considered that there are no edge bolt                                                                       | s.      |           |     |
| For inner bolts $k_1$ is the smaller of $1.4 \frac{p_{2,w}}{d_{2}} - 1.7$ or 2.5.                                                           |         |           |     |
| $1.4\frac{p_{2,w}}{d_{o}} - 1.7 = \left(\frac{1.4 \times 80}{26}\right) - 1.7 = 2.61$                                                       |         |           |     |
| 2.5 < 2.61                                                                                                                                  |         |           |     |
| Therefore, $k_1 = 2.5$                                                                                                                      |         |           |     |
|                                                                                                                                             |         |           |     |
|                                                                                                                                             |         |           |     |
|                                                                                                                                             |         |           |     |

| Example 17 - Column splice- Non bearing                                                                                                                                                                                                                                                                                           | Sheet             | 14 of | 14    | Rev |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------|-------|-----|
| The bearing strengths for single bolts are:                                                                                                                                                                                                                                                                                       |                   |       |       |     |
| End bolts                                                                                                                                                                                                                                                                                                                         |                   |       |       |     |
| $F_{b,Rd,end} = (F_{b,Rd})_{min} = \frac{2.5 \times 0.64 \times 470 \times 24 \times 9.4}{1.25} \times 10^{-3} = 136 \text{ kN}$                                                                                                                                                                                                  |                   |       |       |     |
| Inner bolts                                                                                                                                                                                                                                                                                                                       |                   |       |       |     |
| $F_{b,Rd,inner} = (F_{b,Rd})_{max} = \frac{2.5 \times 0.78 \times 470 \times 24 \times 9.4}{1.25} \times 10^{-3} = 165 \text{ kN}$                                                                                                                                                                                                |                   |       |       |     |
| Shear resistance of a single bolt<br>The design shear resistance of a single bolt in the web $(F_{v,ucw,Rd})$ is                                                                                                                                                                                                                  |                   |       |       |     |
| $F_{\rm v,ucw,Rd} = 2F_{\rm v,wp,Rd}$                                                                                                                                                                                                                                                                                             |                   |       |       |     |
| $F_{\rm v,wp,Rd}$ =136 kN                                                                                                                                                                                                                                                                                                         |                   | She   | et 12 |     |
| $F_{\rm v,ucw,Rd} = 2 \times 136 = 272 \text{ kN}$                                                                                                                                                                                                                                                                                |                   |       |       |     |
| Note: The shear resistance is multiplied by 2 because when considering column web there are two shear planes passing through the bolt.                                                                                                                                                                                            | the               |       |       |     |
| Resistance of the upper column web bolt group                                                                                                                                                                                                                                                                                     |                   |       |       |     |
| As, $(F_{b,Rd})_{max}$ (165 kN) < $F_{v,Rd,w,uc}$ (272 kN)                                                                                                                                                                                                                                                                        |                   | 3.7   | (1)   |     |
| the resistance of the bolt group in the upper column web is:                                                                                                                                                                                                                                                                      |                   |       |       |     |
| $V_{\text{ucw,Rd,}} = \sum F_{b,Rd} = (2 \times 136) + (2 \times 165) = 602 \text{ kN}$                                                                                                                                                                                                                                           |                   |       |       |     |
| $\frac{N_{\rm ucw, Ed}}{V_{\rm ucw, Rd}} = \frac{415.4}{602} = 0.69 < 1.0$                                                                                                                                                                                                                                                        |                   |       |       |     |
| Therefore the resistance of the bolt group in the upper column web is adequate.                                                                                                                                                                                                                                                   |                   |       |       |     |
| 17.6 Structural integrity of the column splice                                                                                                                                                                                                                                                                                    |                   |       |       |     |
| The structural integrity of the column splice (resistance to tying) should<br>verified. However, in the case of a non-bearing column splice this veri<br>will not be the controlling factor because the design compression force is<br>greater than the design tying force. Therefore, the verification has not<br>included here. | ficatio<br>is muc |       |       |     |
|                                                                                                                                                                                                                                                                                                                                   |                   |       |       |     |
|                                                                                                                                                                                                                                                                                                                                   |                   |       |       |     |
|                                                                                                                                                                                                                                                                                                                                   |                   |       |       |     |
|                                                                                                                                                                                                                                                                                                                                   |                   |       |       |     |
|                                                                                                                                                                                                                                                                                                                                   |                   |       |       |     |
|                                                                                                                                                                                                                                                                                                                                   |                   |       |       |     |
|                                                                                                                                                                                                                                                                                                                                   |                   |       |       |     |
|                                                                                                                                                                                                                                                                                                                                   |                   |       |       |     |
|                                                                                                                                                                                                                                                                                                                                   |                   |       |       |     |
|                                                                                                                                                                                                                                                                                                                                   |                   |       |       |     |
|                                                                                                                                                                                                                                                                                                                                   |                   |       |       |     |



| Example 18 - Column splice - Non bearin                                                   | g (Net Tension) Sheet 2                                                                 | of 6 Rev      |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------|
| · ·                                                                                       |                                                                                         |               |
| The design aspects covered in this examp                                                  | ie are.                                                                                 |               |
| • Resistance of the splice                                                                |                                                                                         |               |
| - Flange cover plates – tension                                                           | _                                                                                       |               |
| – Flange cover plates – block tearin                                                      | g.                                                                                      |               |
| 18.2 Joint data and sectio                                                                | n properties                                                                            |               |
| Upper column                                                                              |                                                                                         |               |
| $203 \times 203 \times 60$ UKC in S355 steel                                              |                                                                                         |               |
| Depth                                                                                     | $h_{\rm uc} = 209.6 \ {\rm mm}$                                                         | P363          |
| Width                                                                                     | $b_{\rm uc} = 205.8 \ {\rm mm}$                                                         |               |
| Thickness of the web                                                                      | $t_{\rm w,uc} = 9.4  {\rm mm}$                                                          |               |
| Thickness of the flange<br>Root radius                                                    | $t_{f,uc} = 14.2 \text{ mm}$<br>$r_{uc} = 10.2 \text{ mm}$                              |               |
| Area                                                                                      | $r_{\rm uc} = 10.2 \text{ mm}$ $A_{\rm uc} = 76.4 \text{ cm}^2$                         |               |
| Area of flange                                                                            | $A_{\rm uc} = 70.4$ cm                                                                  |               |
| $A_{\rm f,uc} = b_{\rm uc} t_{\rm f,uc} = 205.8 \times 14.2 = 29.22$                      | cm <sup>2</sup>                                                                         |               |
| Area of web                                                                               |                                                                                         |               |
| $A_{\rm w,uc} = A_{\rm uc} - 2A_{\rm f,uc} = 76.4 - 29.22 =$                              | 17.96 cm <sup>2</sup>                                                                   |               |
| For S355 steel                                                                            |                                                                                         | BS EN 10025-2 |
| Yield strength ( $t \le 16$ mm)                                                           | $f_{y,uc} = R_{eH} = 355 \text{ N/mm}^2$                                                | Table 7       |
| Ultimate tensile strength (3 mm $\le t \le 100$                                           |                                                                                         |               |
| In the direction of load transfer (1)                                                     |                                                                                         |               |
| End of upper column to first bolt row on                                                  | column web $e_{1,w} = 50 \text{ mm}$                                                    |               |
| Pitch between bolt rows on column web                                                     | $p_{1,w} = p_{1,wp} = 80 \text{ mm}$                                                    |               |
| In the direction perpendicular to load tran                                               | usfer (2)                                                                               |               |
| Pitch between bolt lines on column web                                                    | $p_{2,w} = p_{2,wp} = 80 \text{ mm}$                                                    |               |
| Edge of upper column to first bolt line or                                                |                                                                                         |               |
| Lower column                                                                              |                                                                                         |               |
| $254 \times 254 \times 89$ UKC in S355 steel                                              |                                                                                         |               |
| Depth                                                                                     | $h_{\rm lc} = 260.3 {\rm mm}$                                                           | P363          |
| Width                                                                                     | $b_{\rm lc} = 256.3 {\rm mm}$                                                           |               |
| Thickness of the web                                                                      | $t_{\rm w,lc} = 10.3 {\rm mm}$                                                          |               |
| Thickness of the flange                                                                   | $t_{\rm f,lc} = 17.3 \text{ mm}$                                                        |               |
| Root radius                                                                               | $r_{\rm lc} = 12.7 {\rm mm}$                                                            |               |
| For S355 steel                                                                            |                                                                                         | BS EN 10025-2 |
| Yield strength (16 mm < $t \le 40$ mm)<br>Ultimate tensile strength (3 mm $\le t \le 100$ | $f_{y,lc} = R_{eH} = 345 \text{ N/mm}^2$<br>0 mm) $f_{u,lc} = R_m = 470 \text{ N/mm}^2$ | Table 7       |
| The width and thickness guidance for the the Access Steel NCCI document SN024             | flange and web cover plates given in                                                    |               |
| The edge, end and spacing dimensions co                                                   | mply with the maximum and                                                               |               |
| minimum values given in Table 3.3 of BS                                                   | SEN1002 1 8.2005                                                                        |               |

| Example 18 - Column splice - Non bearing                                                                                                                             | g (Net                                  | Tension)                            | Sheet 3           | of 6               | Rev     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------|-------------------|--------------------|---------|
| Vertical gap between column ends                                                                                                                                     | $g_{\rm v}$                             | = 10 mm                             |                   |                    |         |
| Flange cover plates                                                                                                                                                  |                                         |                                     |                   |                    |         |
| $210 \times 690 \times 12$ in S355 steel                                                                                                                             |                                         |                                     |                   |                    |         |
| Height                                                                                                                                                               | $h_{ m fp}$                             | = 690 mm                            |                   |                    |         |
| Width                                                                                                                                                                | $b_{ m fp}$                             | = 210 mm                            |                   |                    |         |
| Thickness                                                                                                                                                            | $t_{ m fp}$                             | = 12 mm                             |                   |                    |         |
| For buildings that will be built in the UK, strength $(f_y)$ and the ultimate strength $(f_u)$ obtained from the product standard. Whe nominal value should be used. | for str                                 | uctural steel should be             | those             | BS EN 19<br>NA.2.4 | 993-1-1 |
| For S355 steel                                                                                                                                                       |                                         |                                     |                   | BS EN 10           | 0025-2  |
| Yield strength ( $t \le 16 \text{ mm}$ )                                                                                                                             |                                         | $f_{\rm y,fp} = R_{\rm eH} = 355$   |                   | Table 7            |         |
| Ultimate tensile strength (3 mm $\leq t \leq 100$                                                                                                                    | mm)                                     | $f_{\rm u,fp} = R_{\rm m} = 470$    | $N/mm^2$          |                    |         |
| Number of bolts between one flange cover plate and upper column                                                                                                      |                                         | $n_{\rm fp} = 8$                    |                   |                    |         |
| Direction of load transfer (1)                                                                                                                                       |                                         |                                     |                   |                    |         |
| Plate edge to first bolt row                                                                                                                                         | $e_{1,\mathrm{fp}}$                     |                                     |                   |                    |         |
| Pitch between bolt rows                                                                                                                                              | $p_{1,\mathrm{fp}}$                     |                                     |                   |                    |         |
| Pitch between bolt rows (across joint)                                                                                                                               |                                         | = 110 mm                            |                   |                    |         |
| Direction perpendicular to load transfer (2                                                                                                                          |                                         |                                     |                   |                    |         |
| Plate edge to first bolt line<br>Pitch between bolt lines                                                                                                            | $e_{2,\mathrm{fp}} \ p_{2,\mathrm{fp}}$ | = 55  mm $= 100  mm$                |                   |                    |         |
| Flange packs                                                                                                                                                         |                                         |                                     |                   |                    |         |
| $340 \times 210 \times 25$ in S355 steel                                                                                                                             |                                         |                                     |                   |                    |         |
| Depth                                                                                                                                                                | $h_{\rm fp,pa}$                         | = 340 mm                            |                   |                    |         |
| Width                                                                                                                                                                |                                         | = 210 mm                            |                   |                    |         |
| Thickness                                                                                                                                                            | $t_{\rm fp,pa}$                         | = 25 mm                             |                   |                    |         |
| Web cover plates                                                                                                                                                     |                                         |                                     |                   |                    |         |
| $350 \times 150 \times 8$ in S355 steel                                                                                                                              |                                         |                                     |                   |                    |         |
| Height                                                                                                                                                               | $h_{ m wp}$                             | = 350 mm                            |                   |                    |         |
| Width                                                                                                                                                                | $b_{ m wp}$                             | = 150 mm                            |                   |                    |         |
| Thickness                                                                                                                                                            | $t_{\rm wp}$                            | = 8 mm                              |                   |                    |         |
| For S275 steel                                                                                                                                                       |                                         |                                     |                   | BS EN 10           | 0025-2  |
| Yield strength ( $t \le 16$ mm)                                                                                                                                      | 、<br>、                                  | $f_{y,wp} = R_{eH} = 355$           |                   | Table 7            |         |
| Ultimate tensile strength (3 mm $\le t \le 100$                                                                                                                      |                                         | $f_{\rm u,wp} = R_{\rm m} = 470$    | N/mm <sup>-</sup> |                    |         |
| Number of bolts between web cover plate                                                                                                                              | and u                                   | pper column $n_{\rm wp} = 4$        |                   |                    |         |
| In the direction of load transfer (1)                                                                                                                                |                                         | 10                                  |                   |                    |         |
| Plate edge to first bolt row                                                                                                                                         |                                         | = 40  mm                            |                   |                    |         |
| Pitch between bolt rows<br>Pitch between bolt rows (across joint)                                                                                                    | -                                       | = 80  mm<br>$_{i} = 110 \text{ mm}$ |                   |                    |         |
| (utross joint)                                                                                                                                                       | <b>r</b> ₁,wp,                          | J                                   |                   |                    |         |
|                                                                                                                                                                      |                                         |                                     |                   |                    |         |

| Example 18 - Column splice - Non bear                                                                                             | ing (Net Tension)                    | Sheet 4 | of 6                | Rev     |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------|---------------------|---------|
| In the direction perpendicular to load tra                                                                                        | ansfer (2)                           |         |                     |         |
| Plate edge to first bolt line                                                                                                     | $e_{2,wp} = 35 \text{ mm}$           |         |                     |         |
| Pitch between bolt lines                                                                                                          | $p_{2,\mathrm{wp}} = 80 \mathrm{mm}$ |         |                     |         |
| Web packs $170 \times 150 \times 0.5$ in S355 steel                                                                               |                                      |         |                     |         |
| Depth                                                                                                                             | $h_{\rm wp,pa} = 170 \text{ mm}$     |         |                     |         |
| Width                                                                                                                             | $b_{\rm wp,pa} = 150 \ {\rm mm}$     |         |                     |         |
| Thickness                                                                                                                         | $t_{\rm wp,pa} = 0.5 \text{ mm}$     |         |                     |         |
| Bolts<br>M24 Class 8.8                                                                                                            |                                      |         |                     |         |
| Tensile stress area                                                                                                               | $A_{\rm s} = 353 \ {\rm mm}^2$       |         | P363 C-3            | 06      |
| Diameter of the shank                                                                                                             | d = 24  mm                           |         |                     |         |
| Diameter of the holes                                                                                                             | $d_0 = 26 \text{ mm}$                |         |                     |         |
| Yield strength                                                                                                                    | $f_{\rm yb}$ = 640 N/mm <sup>2</sup> |         | Table 3.1           |         |
| Ultimate tensile strength                                                                                                         | $f_{\rm ub} = 800 \text{ N/mm}^2$    |         |                     |         |
| <b>18.2.2 Connection category</b><br>The bolted connection uses non-preloade<br>bolted connection.                                | ed bolts i.e. Category A: Bearin     | g type  | 3.4.1(1)            |         |
| 18.3 Partial factors for re                                                                                                       | sistance                             |         |                     |         |
| 18.3.1 Structural steel                                                                                                           |                                      |         |                     |         |
| $\gamma_{\rm M0} = 1.0$                                                                                                           |                                      |         | BS EN 19<br>NA.2.15 | 993-1-1 |
| $\gamma_{M2} = 1.1$                                                                                                               |                                      |         | NA.2.13             |         |
| 18.4 Resistance of the co                                                                                                         | onnection                            |         |                     |         |
| For completeness, the design verification<br>addition to the tension and block tearing<br>See Example 17 for the following verifi | verifications given in this exam     |         |                     |         |
| • Flange cover plates – maximum con                                                                                               | pression                             |         |                     |         |
| • Flange cover plate bolt group                                                                                                   |                                      |         |                     |         |
| • Web cover plate                                                                                                                 |                                      |         |                     |         |
| • Web cover plate bolt group                                                                                                      |                                      |         |                     |         |
| • Upper column web bolt group                                                                                                     |                                      |         |                     |         |
| 18.4.1 Flange cover plates – ten                                                                                                  | ision resistance                     |         |                     |         |
| The design resistance in tension $(N_{t,Rd})$ i                                                                                   | s the lesser of:                     |         | BS EN 1             | 993-1-1 |
| $N_{\rm pl,Rd} = \frac{Af_y}{\gamma_{\rm M0}}$ and $N_{\rm u,Rd} = \frac{0.9A_{\rm net}f}{\gamma_{\rm M2}}$                       | <u>u</u>                             |         | 6.2.3(2)            |         |
| $A = b_{\rm fp} t_{\rm fp} = 210 \times 12 = 2520 \ {\rm mm}^2$                                                                   |                                      |         |                     |         |
|                                                                                                                                   |                                      |         |                     |         |

| Example 18 - Column splice - Non bearing (Net Tension)                                                                                                | Sheet 5 | of 6                 | Rev      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|----------|
| $N_{\rm pl,Rd} = \frac{2520 \times 355}{1.0} \times 10^{-3} = 895 \text{ kN}$                                                                         |         |                      | <u> </u> |
| 1.0                                                                                                                                                   |         |                      |          |
| As the bolt holes are not staggered the net area $(A_{net})$ is determined as                                                                         |         | BS EN 19             |          |
| $A_{\text{net}} = A - 2 d_0 t_{\text{fp}} = 2520 - (2 \times 26 \times 12) = 1896 \text{ mm}^2$                                                       |         | 6.2.2.2(3)           | )        |
| $N_{u,Rd} = \frac{0.9 \times 1896 \times 470}{1.1} \times 10^{-3} = 729 \text{ kN}$                                                                   |         | BS EN 19<br>6.2.3(2) | 993-1-1  |
| 729  kN < 895  kN                                                                                                                                     |         |                      |          |
| Therefore, the design resistance in tension is                                                                                                        |         |                      |          |
| $N_{\rm t,Rd} = N_{\rm u,Rd} = 729  { m kN}$                                                                                                          |         |                      |          |
|                                                                                                                                                       |         |                      |          |
| 18.4.2 Flange cover plates – Block tearing                                                                                                            |         |                      |          |
|                                                                                                                                                       |         |                      |          |
|                                                                                                                                                       |         |                      |          |
|                                                                                                                                                       |         |                      |          |
| Area subject<br>to tension                                                                                                                            | ct      |                      |          |
|                                                                                                                                                       |         |                      |          |
|                                                                                                                                                       |         |                      |          |
| Area subject 290<br>Area subject to shear 290                                                                                                         |         |                      |          |
| to shear to shear                                                                                                                                     |         |                      |          |
| $  \qquad \qquad \rightarrow \\ _{55} \leftarrow \rightarrow \\ _{55} \leftarrow $                                                                    |         |                      |          |
| a) b)                                                                                                                                                 |         |                      |          |
| Figure 18.2                                                                                                                                           |         |                      |          |
| In this example $p_2 < 2e_2$ ; therefore the block tearing failure area shown                                                                         | ı in    |                      |          |
| Figure 18.2 a) should be considered. However, if $p_2 > 2e_2$ the block t                                                                             |         |                      |          |
| failure area shown in Figure 18.2 b) should be considered.                                                                                            |         |                      |          |
| For symmetrical bolt groups subject to a concentric load, the design blo                                                                              | ock     | 3.10.2(2)            |          |
| tearing resistance is:                                                                                                                                |         |                      |          |
| $V_{\text{eff},1,\text{Rd}} = \frac{f_{\text{u}}A_{\text{nt}}}{\gamma_{\text{M2}}} + \frac{f_{\text{y}}A_{\text{nV}}}{\sqrt{3}\gamma_{\text{M0}}}$    |         | Eq (3.9)             |          |
| $\gamma_{M2}  \sqrt{3\gamma_{M0}}$                                                                                                                    |         | 1 \ /                |          |
| $A_{\rm nt}$ is the net area subject to tension                                                                                                       |         |                      |          |
| $A_{\rm nt} = (p_{2,\rm fp} - d_0)t_{\rm fp} = (100 - 26) \times 12 = 888 \text{ mm}^2$                                                               |         |                      |          |
| $A_{\rm nV}$ is the net area subject to shear                                                                                                         |         |                      |          |
| $A_{\rm nV} = 2(3p_{1,{\rm fp}} + e_{1,{\rm fp}} - 3.5d_0)t_{\rm fp}$                                                                                 |         |                      |          |
| $= 2 \times ((3 \times 80) + 50 - (3.5 \times 26)) \times 12 = 4776 \text{ mm}^2$                                                                     |         |                      |          |
| Therefore, the design resistance to block tearing is                                                                                                  |         |                      |          |
| $V_{\text{eff},1,\text{Rd}} = \left(\frac{470 \times 888}{1.1} + \frac{355 \times 4776}{\sqrt{3} \times 1.0}\right) \times 10^{-3} = 1358 \text{ kN}$ |         |                      |          |
|                                                                                                                                                       |         |                      |          |
|                                                                                                                                                       |         |                      |          |

| Example 18 - Column splice - Non bearing (Net Tension)                                                                                                                                                                                                                                                                                                                                                                                                      | Sheet 6                  | of 6 | Rev |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------|-----|
| <b>18.4.3 Structural integrity of the column splice</b><br>The structural integrity of the column splice (resistance to tying) show<br>verified. However, in the case of a non-bearing column splice this verified. However, in the case of a non-bearing column splice this verified will not be the controlling factor because the design compression force<br>greater than the design tying force. Therefore, the verification has not<br>included here. | erification<br>e is much |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |      |     |
| included here.<br>Example 17 contains a verification for structural integrity.                                                                                                                                                                                                                                                                                                                                                                              |                          |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |      |     |

|                                                                                                                                                                                                                                                                     | Job No.   | CDS164         |              | Sheet    | 1 of                 | 6                                   | Rev                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|--------------|----------|----------------------|-------------------------------------|----------------------------------------------------------|
|                                                                                                                                                                                                                                                                     | Job Title | Worked exam    | nples to the | Euroco   | des with             | ı UK                                | NA                                                       |
| Silwood Park, Ascot, Berks SL5 7QN                                                                                                                                                                                                                                  | Subject   | Example 19     | - Base plate | e –Nomii | nally pi             | nned                                |                                                          |
| Telephone: (01344) 636525<br>Fax: (01344) 636570                                                                                                                                                                                                                    | Client    | SCI            | Made by      | MEB      | Date                 | Feb                                 | 2009                                                     |
| CALCULATION SHEET                                                                                                                                                                                                                                                   |           | 501            | Checked by   | DGB      | Date                 | Jul 2                               | 2009                                                     |
| <b>19 Base plate</b> – <b>N</b><br><b>19.1 Scope</b><br>Verify the adequacy of the base plat<br>$305 \times 305 \times 137$ UKC<br>$305 \times 600 \times 35$<br>$600 \times 600 \times 35$<br>Base plate<br>5275<br>$V_{Ed}$<br>Fillet welds<br>(8  mm leg length) |           | in Figure 19.1 |              |          | BS I<br>2005<br>Nati | EN 19<br>5, inc<br>onal 1<br>ss oth | es are to<br>993-1-8:<br>luding it:<br>Annex,<br>nerwise |
| M24 grade 4.6<br>holding down bolts<br>Column and base plate<br>are in direct bearing<br>Figure 19.1<br>The design aspects covered in this e<br>• Resistance of joint<br>- Effective area of base plate<br>- Thickness of base plate veri<br>- Base plate welds.    | -         | re:            | 600<br>¥     |          |                      |                                     |                                                          |

| Example 19 - Base plate -Nominally pir                                                                                                                               | nned                                                                                                  |                                                                                                    | Sheet | 2  | of            | 6 | Rev          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------|----|---------------|---|--------------|
| 19.2 Design forces at ULS                                                                                                                                            | ;                                                                                                     |                                                                                                    |       |    |               |   |              |
| Design compression force acting in the co<br>Design shear force                                                                                                      |                                                                                                       | $N_{\rm Ed} = 2635 \text{ kN}$ $V_{\rm Ed} = 100 \text{ kN}$                                       |       |    |               |   |              |
| 19.3 Joint details and sect                                                                                                                                          | tion                                                                                                  | properties                                                                                         |       |    |               |   |              |
| Column                                                                                                                                                               |                                                                                                       |                                                                                                    |       | ]] | P363          |   |              |
| $305\times305\times137$ UKC in S355 steel                                                                                                                            |                                                                                                       |                                                                                                    |       |    |               |   |              |
| Depth<br>Width<br>Web thickness<br>Flange thickness<br>Root radius<br>Area                                                                                           | h<br>b<br>t <sub>w</sub><br>t <sub>f</sub><br>r<br>A                                                  | = 309.2 mm<br>= 13.8 mm<br>= 21.7 mm                                                               |       |    |               |   |              |
| For buildings that will be built in the UK strength $(f_y)$ and the ultimate strength $(f_u)$ obtained from the product standard. When nominal value should be used. | , the n<br>for str                                                                                    | ominal values of the yie<br>ructural steel should be                                               | those |    | BS E<br>NA.2  |   | 993-1-1      |
| For S355 steel<br>Yield strength (16 mm $< t \le 40$ mm)<br>Ultimate strength (3 mm $\le t \le 100$ mm)                                                              |                                                                                                       | = $R_{\rm eH}$ = 345 N/mm <sup>2</sup><br>= $R_{\rm m}$ = 470 N/mm <sup>2</sup>                    |       |    | BS E<br>Table |   | 0025-2       |
| Base plate                                                                                                                                                           |                                                                                                       |                                                                                                    |       |    |               |   |              |
| Width<br>Length<br>Thickness<br>For S275 steel<br>Yield strength (16 mm $< t \le 40$ mm)<br>Ultimate strength (3 mm $\le t \le 100$ mm)                              | $egin{aligned} & b_{ m bp} \ & l_{ m bp} \ & t_{ m bp} \ & f_{ m y,bo} \ & f_{ m u,bp} \end{aligned}$ | = 600 mm<br>= 600 mm<br>= 35 mm<br>= $R_{eH} = 265 \text{ N/mm}^2$<br>= $R_m = 410 \text{ N/mm}^2$ |       |    | BS E<br>Table |   | 0025-2       |
| Fillet welds<br>Leg length                                                                                                                                           |                                                                                                       | 8 mm                                                                                               |       |    |               |   |              |
| Throat                                                                                                                                                               | а                                                                                                     | = 5.7  mm                                                                                          |       |    |               |   |              |
| <b>Concrete</b><br>Grade of concrete below base plate is C2.<br>Characteristic cylinder strength                                                                     | $f_{ m ck}$                                                                                           | $= 25 \text{ N} / \text{mm}^2$                                                                     |       |    | BS E<br>Table |   | 992-1-1      |
| Characteristic cube strength<br>Design compressive strength of the concrete<br>$f_{cd} = \frac{\alpha_{cc} f_{ck}}{\gamma_c}$                                        | •                                                                                                     | $be = 30 \text{ N} / \text{mm}^2$<br>determined from:                                              |       |    | BS E<br>3.1.6 |   | 992-1-1      |
| where:<br>$ \alpha_{cc} = 0.85 \text{ (for compression)} $ $ \gamma_c = 1.5 \text{ (for the persistent and )} $                                                      | transie                                                                                               | nt design situation)                                                                               |       |    | BS E<br>Table |   | 992-1-1<br>1 |

| Example 19 - Base plate –Nominally pinned                                                                                                                                                                                                    | Sheet  | 3 a | of 6               | Rev      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|--------------------|----------|
| $f_{\rm cd} = \frac{0.85 \times 25}{1.5} = 14.2 \text{ N/mm}^2$                                                                                                                                                                              |        |     | S EN 19<br>.1.6(1) | 992-1-1  |
| 19.4 Partial factors for resistance                                                                                                                                                                                                          |        |     |                    |          |
| 19.4.1 Structural steel                                                                                                                                                                                                                      |        |     |                    |          |
| $\gamma_{M0} = 1.0$                                                                                                                                                                                                                          |        |     | S EN 19<br>IA.2.15 | 93-1-1   |
| 19.4.2 Weld                                                                                                                                                                                                                                  |        |     |                    |          |
| $\gamma_{M2} = 1.25$                                                                                                                                                                                                                         |        | T   | able NA            | .1       |
| 19.5 Resistance of joint                                                                                                                                                                                                                     |        |     |                    |          |
| 19.5.1 Effective area of base plate                                                                                                                                                                                                          |        |     |                    |          |
| $  \stackrel{beff}{<} \rangle$                                                                                                                                                                                                               |        |     |                    |          |
| $t_{W} + 2c$<br>$A_{eff}$                                                                                                                                                                                                                    |        |     |                    |          |
| Figure 19.2                                                                                                                                                                                                                                  | the    | 6   | 2 5(1)             |          |
| The flange of an equivalent T-stub in compression is used to represent design resistance of the concrete in bearing.                                                                                                                         | ule    | 0   | .2.5(1)            |          |
| The design bearing strength of the joint is                                                                                                                                                                                                  |        |     |                    |          |
| $f_{\rm jd} = \frac{\beta_{\rm j} F_{\rm R,du}}{b_{\rm eff} l_{\rm eff}}$                                                                                                                                                                    |        | 6   | .2.5(7) E          | Eq (6.6) |
| where:                                                                                                                                                                                                                                       |        |     |                    |          |
| $\beta_j = 2/3$ Assuming that the characteristic strength of the grout is less than 0.2 times the characteristic strength of the confoundation and the thickness of the grout is not greater 0.2 times the smallest width of the base plate. | ncrete | 6   | .2.5(7)            |          |
| $b_{\rm eff} \& l_{\rm eff}$ are shown in Figure 19.2                                                                                                                                                                                        |        |     |                    |          |
| $F_{\text{Rd,u}}$ is the concentrated design resistance force given in BS EN199 where $A_{c0}$ is to be taken as $(b_{\text{eff}} l_{\text{eff}})$ .                                                                                         | 2,     |     |                    |          |
|                                                                                                                                                                                                                                              |        |     |                    |          |

| Example 19 - Base plate –Nominally pinned Sheet                                                                                                                                                                                 | 4 of 6                | Rev      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|
| $F_{\rm Rd,u} = A_{\rm c0} f_{\rm cd} \sqrt{\left(\frac{A_{\rm c1}}{A_{\rm c0}}\right)} \le 3 f_{\rm cd} A_{\rm c0}$                                                                                                            | BS EN 19<br>6.7(2) Eq |          |
| where:                                                                                                                                                                                                                          |                       |          |
| $\sqrt{\frac{A_{c1}}{A_{c0}}}$ accounts for the concrete bearing strength enhancement due to diffusion of the force within the concrete.                                                                                        |                       |          |
| If the foundation dimensions are not known it is<br>reasonable to assume that in most cases the<br>foundation size relative to the size of the base<br>plate (see Figure 19.3) will allow. $\sqrt{\frac{A_{c1}}{A_{c0}}} = 1.5$ |                       |          |
| Note: As shown below, when $\sqrt{\frac{A_{c1}}{A_{c0}}} = 1.5$ , $f_{jd} = f_{cd}$ .                                                                                                                                           |                       |          |
| Guidance on the calculation of $\sqrt{\frac{A_{c1}}{A_{c0}}}$ is given in Annex A of the Access-steel                                                                                                                           |                       |          |
| document SN037a (available at www.access-steel.com).                                                                                                                                                                            |                       |          |
| $b_{bp} \text{ or } h_{bp}$ $e_{b} \text{ Base plate}$ Foundation $0.5b_{bp} \text{ or } 0.5 h_{bp}  d_{f}$                                                                                                                     |                       |          |
| $A_{cl}=2.25 A_{co}$                                                                                                                                                                                                            |                       |          |
| Figure 19.3                                                                                                                                                                                                                     |                       |          |
| Assume that the foundation size will allow the distribution of the load as shown in Figure 19.3, $\sqrt{1}$                                                                                                                     |                       |          |
| therefore, $\sqrt{\frac{A_{c1}}{A_{c0}}} = 1.5$                                                                                                                                                                                 |                       |          |
| $A_{c0} f_{cd} \sqrt{\left(\frac{A_{c1}}{A_{c0}}\right)} = 1.5 A_{c0} f_{cd}$                                                                                                                                                   |                       |          |
| As $1.5 A_{c0} f_{cd} < 3 f_{cd} A_{c0}$                                                                                                                                                                                        | BS EN 19<br>6.7(2) Eq |          |
| $F_{\rm Rd,u} = 1.5 A_{\rm c0} f_{\rm cd}$                                                                                                                                                                                      |                       |          |
| Taking $A_{c0} = b_{eff} l_{eff}$ gives,                                                                                                                                                                                        | 6.2.5(7)              |          |
| $F_{\rm Rd,u} = 1.5 b_{\rm eff} l_{\rm eff} f_{\rm cd}$                                                                                                                                                                         |                       |          |
| Therefore,                                                                                                                                                                                                                      |                       |          |
| $f_{jd} = \frac{\beta_j 1.5 b_{eff} l_{eff} f_{cd}}{b_{eff} l_{eff}} = 1.5 \beta_j f_{cd}$                                                                                                                                      |                       |          |
| $f_{\rm jd} = 1.5 \beta_{\rm j} f_{\rm cd} = 1.5 \times \frac{2}{3} \times f_{\rm cd} = f_{\rm cd} = 14.2 \text{ N/mm}^2$                                                                                                       | 6.2.5(7) 1            | Eq (6.6) |
|                                                                                                                                                                                                                                 |                       |          |

| Example 19 - Base plate –Nominally pinned She                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | et | 5 | of    | 6    | Rev      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|-------|------|----------|
| Making the design compression resistance of the joint ( $F_{c.Rd}$ ) equal to the a<br>design force ( $N_{Ed}$ ), the bearing area required is determined as:<br>$A_{eff} = \frac{N_{Ed}}{f_{jd}} = \frac{2635 \times 10^3}{14.2} = 185600 \text{ mm}^2$<br>The bearing area provided is approximately:<br>$4c^2 + p_{col}c + A$<br>c is defined in Figure 19.2.<br>$A = 17400 \text{ mm}^2$ cross sectional area of column<br>$p_{col} = 1820 \text{ mm}$ perimeter of the column taken from member property ta<br>Taking the area provided to equal the area required gives,<br>$4c^2 + p_{col}c + A = 185600 \text{ mm}^2$<br>$4c^2 + p_{col}c + A = 185600 \text{ mm}^2$<br>$4c^2 + 1820c + 17400 = 185600 \text{ mm}^2$<br>Solving gives,<br>c = 79  mm<br>Verify that the T-stubs do not overlap for $c = 79 \text{ mm}$                                                                                                                                                                                                                                                                                    |    |   | P363  |      |          |
| $\frac{h-2t_{f}}{2} = \frac{320.5 - (2 \times 21.7)}{2} = 139 \text{ mm}$ As $c < 139$ mm, the T-stubs do not overlap, therefore no allowance for overlapping is required.<br>Verify that the plan size of the base plate is adequate.<br>Width required is $b_{\text{eff}} = h + 2c = 320.5 + (2 \times 79) = 478.5 \text{ mm}$<br>Length required is $l_{\text{eff}} = b + 2c = 309.2 + (2 \times 79) = 467.2 \text{ mm}$<br>As both $b_{\text{eff}}$ and $l_{\text{eff}}$ are less than 600 mm, the plan size is adequate.<br><b>19.5.2 Thickness of base plate</b><br>Rearranging Equation (6.5) of BS EN1993-1-8 gives the minimum thickne the base plate.<br>$t = \frac{c}{\sqrt{f_y/3f_{\text{jd}}\gamma_{\text{M0}}}} = \frac{79}{\sqrt{265/3 \times 14.2 \times 1}} = 31.6 \text{ mm}$<br>31.6mm < 35 mm<br>Therefore the 600 × 600 × 35 mm S275 base plate is adequate.<br><b>19.5.3 Base plate welds</b><br>BS EN1993-1-8 gives two methods for determining the strength of a fillet weld, the directional method (6.5.3.2) and the simplified method (6.5.3.3)<br>Here the simplified method is used. |    |   | Based | 1 on | Eq (6.5) |

| Example 19 - Base plate –Nominally pinned                                                                                                      | Sheet | 6 of | 6       | Rev |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|---------|-----|
| Verify that, $\frac{F_{w,Ed}}{F_{w,Rd}} \le 1.0$                                                                                               |       |      |         |     |
| where:                                                                                                                                         |       |      |         |     |
| $F_{\rm w.Ed}$ Design value of the weld force per unit length                                                                                  |       |      |         |     |
| $F_{\rm w,Rd}$ Design weld resistance per unit length                                                                                          |       | 4.5  | .3.3(2  | )   |
| $= f_{ m vw,d} a$                                                                                                                              |       |      |         |     |
| <i>a</i> is the throat thickness of the fillet weld                                                                                            |       |      |         |     |
| = 5.7 mm (for a fillet weld with an 8 mm leg length)                                                                                           |       |      |         |     |
| $f_{\rm vw, d} = \frac{f_{\rm u} / \sqrt{3}}{\beta_{\rm w} \gamma_{\rm M2}}$                                                                   |       | Eq   | (4.4)   |     |
| $f_{\rm u}$ is the nominal ultimate tensile strength of the weaker part joint                                                                  | ed.   |      |         |     |
| Therefore, $f_u = f_{u,bp} = 410 \text{ N/mm}^2$                                                                                               |       |      |         |     |
| For S275 steel $\beta_{\rm w} = 0.85$                                                                                                          |       | Tal  | ole 4.1 |     |
| $f_{\rm vw, d} = \frac{f_{\rm u}/\sqrt{3}}{\beta_{\rm w} \times \gamma_{\rm M2}} = \frac{410/\sqrt{3}}{0.85 \times 1.25} = 223 \text{ N/mm}^2$ |       | Eq   | (4.4)   |     |
| $F_{\text{w.Rd}} = f_{\text{vw. d}} \times a = 223 \times 5.7 = 1271.0 \text{ N/mm}$                                                           |       |      |         |     |
| Here, in direct bearing the weld only needs to resist the shear force.                                                                         |       |      |         |     |
| Conservatively consider only the welds that run parallel to the applied s                                                                      | hear. |      |         |     |
| Weld length $L_{\rm w}$ = length of weld – 2 × leg length                                                                                      |       |      |         |     |
| $= 100 - (2 \times 8) = 84 \text{ mm}$                                                                                                         |       |      |         |     |
| $F_{\rm w,Ed} = \frac{V_{\rm Ed}}{2L_{\rm w}} = \frac{100 \times 10^3}{2 \times 84} = 595 \text{ N/mm}$                                        |       |      |         |     |
| $\frac{F_{\rm w,Ed}}{F_{\rm w,Rd}} = \frac{595}{1271} = 0.47 < 1$                                                                              |       |      |         |     |
| Therefore an 8 mm fillet weld of 100 mm along either side of the web i adequate.                                                               | S     |      |         |     |
|                                                                                                                                                |       |      |         |     |
|                                                                                                                                                |       |      |         |     |
|                                                                                                                                                |       |      |         |     |
|                                                                                                                                                |       |      |         |     |
|                                                                                                                                                |       |      |         |     |
|                                                                                                                                                |       |      |         |     |
|                                                                                                                                                |       |      |         |     |
|                                                                                                                                                |       |      |         |     |
|                                                                                                                                                |       |      |         |     |
|                                                                                                                                                |       |      |         |     |
|                                                                                                                                                |       |      |         |     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Job No.                                                                                                              | CDS164                                                                                                                           |                                              | Sheet    | 1 of                 | 7                                   | Rev                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------|----------------------|-------------------------------------|--------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Job Title                                                                                                            | Worked exar                                                                                                                      | nnles to the                                 |          |                      | ,                                   | -                                                      |
| Silwood Park, Ascot, Berks SL5 7QN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Subject                                                                                                              | Example 20                                                                                                                       | •                                            |          |                      |                                     |                                                        |
| Telephone: (01344) 636525<br>Fax: (01344) 636570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Client                                                                                                               | 601                                                                                                                              | Made by                                      | MEB      | Date                 | Feb                                 | 2009                                                   |
| CALCULATION SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      | SCI                                                                                                                              | Checked by                                   | DGB      | Date                 | Jul                                 | 2009                                                   |
| <ul> <li>20 Base plate – (</li> <li>20.1 Scope</li> <li>Verify the adequacy of the base which transfers moment and axial</li> <li>305 x 305 x 137 UKC</li> <li>600 x 600 x 40</li> <li>600 x 600 x 40</li> <li>Base plate</li> <li>S275</li> <li>Figure 20.1</li> <li>The design aspects covered in this</li> <li>Resistance of the right side of formation of the second seco</li></ul> | plate for the force.<br>$M_{Ed}$<br>$N_{Ed}$<br>$N_{Ed}$<br>$N_{Ed}$<br>$N_{Ed}$<br>$N_{Ed}$<br>$N_{Ed}$<br>$N_{Ed}$ | he column sh                                                                                                                     |                                              |          | BS E<br>2005<br>Nati | EN 19<br>5, inc<br>onal 1<br>ss oth | s are to<br>193-1-8:<br>luding it<br>Annex,<br>herwise |
| 20.2 Design values of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | forces                                                                                                               | due to c                                                                                                                         | ombine                                       | d        |                      |                                     |                                                        |
| actions at ULS<br>The design value of compression f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | orce and b                                                                                                           | ending momen                                                                                                                     | nt are simul                                 | taneous. |                      |                                     |                                                        |
| The design value of compression f<br>No other combination of actions is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | considere                                                                                                            | d here.                                                                                                                          |                                              | taneous. |                      |                                     |                                                        |
| The design value of compression f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | considere<br>Λ                                                                                                       |                                                                                                                                  | N                                            | taneous. |                      |                                     |                                                        |
| The design value of compression f<br>No other combination of actions is<br>Design compression force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | considere<br>N<br>M                                                                                                  | d here.<br>$Y_{Ed} = 1380 \text{ k}$<br>$I_{y,Ed} = 185 \text{ kN}$                                                              | N<br>Im                                      | taneous. |                      |                                     |                                                        |
| The design value of compression f<br>No other combination of actions is<br>Design compression force<br>Design bending moment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | considere<br>N<br>M                                                                                                  | d here.<br>$Y_{Ed} = 1380 \text{ k}$<br>$I_{y,Ed} = 185 \text{ kN}$                                                              | N<br>Im                                      | taneous. | P363                 | 3                                   |                                                        |
| The design value of compression f<br>No other combination of actions is<br>Design compression force<br>Design bending moment<br><b>20.3 Joint details and</b><br><b>305 × 305 × 137 UKC</b><br>Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | considere<br>N<br>M<br>sectio<br>h                                                                                   | d here.<br>$Y_{Ed} = 1380 \text{ k}$<br>$d_{y,Ed} = 185 \text{ kN}$<br><b>n propert</b><br>= 320.5 m                             | N<br>Jm<br>ies                               | taneous. | P363                 | 3                                   |                                                        |
| The design value of compression f<br>No other combination of actions is<br>Design compression force<br>Design bending moment<br><b>20.3 Joint details and</b><br><b>305 × 305 × 137 UKC</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | considere<br>N<br>M<br>sectio<br>h<br>b                                                                              | d here.<br>$Y_{Ed} = 1380 \text{ k}$<br>$I_{y,Ed} = 185 \text{ kN}$<br><b>n propert</b><br>= 320.5 m<br>= 309.2 m                | N<br>Jm<br>ies<br>mm                         | taneous. | P363                 | 3                                   |                                                        |
| The design value of compression f<br>No other combination of actions is<br>Design compression force<br>Design bending moment<br><b>20.3 Joint details and</b><br><b>305 × 305 × 137 UKC</b><br>Depth<br>Width<br>Web thickness<br>Flange thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sconsidere<br>M<br>sectio<br>h<br>b<br>t <sub>v</sub>                                                                | d here.<br>$Y_{Ed} = 1380 \text{ k}$<br>$d_{y,Ed} = 185 \text{ kN}$<br><b>n propert</b><br>= 320.5 m                             | N<br>Vm<br>ies<br>mm<br>mm                   | taneous. | P363                 | 3                                   |                                                        |
| The design value of compression f<br>No other combination of actions is<br>Design compression force<br>Design bending moment<br>20.3 Joint details and<br>$305 \times 305 \times 137$ UKC<br>Depth<br>Width<br>Web thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s considere<br>M<br>sectio<br>h<br>b<br>t <sub>v</sub><br>t <sub>f</sub><br>r                                        | d here.<br>$Y_{Ed} = 1380 \text{ k}$<br>$I_{y,Ed} = 185 \text{ kN}$<br><b>n propert</b><br>= 320.5  m<br>= 309.2  m<br>= 13.8  m | N<br>Jm<br>ies<br>im<br>mm<br>um<br>um<br>um | taneous. | P363                 | 3                                   |                                                        |

| Example 20 - Base plate – Column with end moment Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 of 7 Rev                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| For buildings that will be built in the UK, the nominal values of the yield strength $(f_y)$ and the ultimate strength $(f_u)$ for structural steel should be those obtained from the product standard. Where a range is given, the lowest nominal value should be used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BS EN 1993-1-1<br>NA.2.4                                   |
| For S355 steel<br>Yield strength (16 mm < $t \le 40$ mm) $f_y = R_{eH} = 345$ N/mm <sup>2</sup><br>Ultimate strength (3 mm $\le t \le 100$ mm) $f_u = R_m = 470$ N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BS EN 10025-2<br>Table 7                                   |
| Base plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |
| Width $b_{bp}$ = 600 mmLength $l_{bp}$ = 600 mmThickness $t_{bp}$ = 40 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            |
| For S275 steel<br>Yield strength (16 mm < $t \le 40$ mm) $f_{y,bp} = R_{eH} = 265$ N/mm <sup>2</sup><br>Ultimate strength (3 mm $\le t \le 100$ mm) $f_{u,bp} = R_m = 410$ N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BS EN 10025-2<br>Table 7                                   |
| <b>Concrete</b><br>Grade of concrete below base plate is C25/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BS EN 1992-1-1                                             |
| Characteristic cylinder strength $f_{ck}$ = 25 N/mm²Characteristic cube strength $f_{ck,cube}$ = 30 N/mm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Table 3.1                                                  |
| Design compressive strength of the concrete is determined from:<br>$f_{cd} = \frac{\alpha_{cc} f_{ck}}{\gamma_{c}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BS EN 1992-1-1<br>3.1.6(1)                                 |
| where:<br>$\alpha_{cc} = 0.85$ (for compression)<br>$\gamma_c = 1.5$ (for the persistent and transient design situation)<br>$f_{cd} = \frac{0.85 \times 25}{1.5} = 14.2 \text{ N/mm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BS EN 1992-1-1<br>Table NA.1<br>BS EN 1992-1-1<br>3.1.6(1) |
| 20.4 Design forces on equivalent T-stubs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |
| $c_{1} \underbrace{\frown}_{c_{1}} \underbrace{\frown}_{c_{1}} \underbrace{\frown}_{c_{1}} \underbrace{\frown}_{c_{1}} \underbrace{\frown}_{c_{1}} \underbrace{\frown}_{c_{2}} \underbrace{\frown}_{c_{3}} \underbrace{\frown}_{c_{3$ |                                                            |
| The design moment resistance of a column base $(M_{j,Rd})$ subject to combined<br>axial force and moment may be determined using the expressions given in<br>Table 6.7 of BS EN 1993-1-8 where the contribution of the concrete under<br>T-stub 2 to the compression resistance is neglected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.2.8.3(1)                                                 |

| Example 20 - Base plate – Column with end moment Sheet 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 of 7 Rev                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Figure 6.18               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| $F_{C,Rd}   F_{C,Rd}   F_{C,Rd} $ |                           |
| Figure 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |
| In this example, the column base connection is subject to a significant compression force. Therefore, the lever arms to be considered are as shown in Figure 20.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.2.5.1(3)                |
| $z = h - t_{\rm f} = 320.5 - 21.7 = 298.8 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |
| Therefore:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |
| $z_{\rm C,1} = z_{\rm C,r} = \frac{298.8}{2} = 149.4$ mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
| The design forces on the T-stubs are:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |
| Left flange (T-stub 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |
| $F_{c,l,Ed} = \frac{N_{Ed}}{2} - \frac{M_{y,Ed}}{z} = \frac{1380}{2} - \frac{185 \times 10^6}{298.8} = 71 \text{ kN} \text{ (Compression)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |
| Right flange (T-stub 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| $F_{\rm c,r,Ed} = \frac{N_{\rm Ed}}{2} + \frac{M_{\rm y,Ed}}{z} = \frac{1380}{2} + \frac{185 \times 10^6}{298.8} = 1309 \text{ kN} \text{ (Compression)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |
| 20.5 Partial factors for resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
| 20.5.1 Structural steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| $\gamma_{\rm M0} = 1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BS EN 1993-1-1<br>NA.2.15 |
| 20.6 Resistance of joint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
| As the joint is symmetrical, the resistance of the left (T-stub 1) and right sides of the joint (T-stub 3) will be equal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |
| Here the right side of the joint is required to resist a greater compression than<br>the left side of the joint. Therefore, only the resistance of the right side of the<br>joint (T-stub 3) needs to be considered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |
| Note: If the applied forces were such that tension occurred at T-stub 1, a separate verification for the tension resistance would be required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                         |

| Example 20 - Base plate – Column with end moment Sheet 4                                                                         | 1 of 7               | Rev |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|
|                                                                                                                                  |                      |     |
| 20.6.1 Right side of joint (T-stub 3)                                                                                            |                      |     |
| The design compression resistance $F_{C,r,Rd}$ of the right side of the joint should be taken as the smaller value of:           | 6.2.8.3(5)           | )   |
| - the concrete in compression under the right column flange $F_{c,pl,Rd}$ (6.2.6.9)                                              |                      |     |
| - the right column flange and web in compression $F_{c,fc,Rd}$ (6.2.6.7)                                                         |                      |     |
| Concrete in compression under the right column flange ( $F_{c,pl,Rd}$ )                                                          |                      |     |
| 6.2.6.9(2) refers to 6.2.5(3) thus the resistance of the concrete under a column flange is:                                      | 6.2.6.9(2)           | )   |
| $F_{\rm c,pl,Rd}$ = $F_{\rm C,Rd}$ = $f_{\rm jd} l_{\rm eff} b_{\rm eff}$                                                        | 6.2.5(3)             |     |
| where:                                                                                                                           |                      |     |
| $f_{\rm jd}$ is the design bearing strength of the joint. From the conservative approach used in Section 19.5 of Example 19,     |                      |     |
| $f_{\rm jd} = 14.2 \ {\rm N/mm^2}$                                                                                               |                      |     |
| $l_{\text{eff}}$ , $b_{\text{eff}}$ are the effective length and breadth of the effective area for the equivalent T-stub flange. |                      |     |
| The effective area that is required under T-stub 3 to resist the design compression force $(F_{c,r,Ed})$ is:                     |                      |     |
| $A_{\rm eff,3} = \frac{F_{\rm c,r,Ed}}{f_{\rm jd}} = \frac{1309.1 \times 10^3}{14.2} = 92190 \ \rm mm^2$                         |                      |     |
| Determine the minimum value for dimension $c_3$ that is required to provide an adequate bearing area.                            |                      |     |
| The effective area is $A_{\text{eff},3} = 4c_3^2 + p_f c_3 + A_f$                                                                |                      |     |
| where:                                                                                                                           |                      |     |
| $c_3$ is defined in Figure 20.2.                                                                                                 |                      |     |
| $A_{\rm f}$ is the cross sectional area of flange                                                                                |                      |     |
| $A_{\rm f} = t_{\rm f}b = 21.7 \times 309.2 = 6709.6 \ {\rm mm}^2$                                                               |                      |     |
| $p_{\rm f}$ is the perimeter of the flange                                                                                       |                      |     |
| $p_{\rm f} = 2t_{\rm f} + 2b = (2 \times 21.7) + (2 \times 309.2) = 661.8 \rm{mm}.$                                              |                      |     |
| Equating the required area to the effective area<br>$92190 = 4c_3^2 + 661.8c_3 + 6709.6$                                         |                      |     |
| Solving,                                                                                                                         |                      |     |
| $c_3 = 85.2 \text{ mm}$                                                                                                          |                      |     |
| The thickness of the base plate limits the maximum cantilever, $c$ , such that                                                   | 6.2.5(4)<br>Eq (6.5) |     |
| $c \leq t \sqrt{\frac{f_{y}}{3f_{jd}\gamma_{M0}}} = 40 \times \sqrt{\frac{265}{3 \times 14.2 \times 1}} = 99.8 \text{ mm}$       |                      |     |
| 85.2 mm < 99.8 mm, therefore the value of $c_3$ is acceptable.                                                                   |                      |     |
| The compression resistance of the concrete under the right hand flange is,                                                       |                      |     |
| $F_{c,pl,Rd} = F_{C,Rd} = f_{jd}l_{eff,3}b_{eff,3}$                                                                              | 6.2.5(3)             |     |

| Example 20 - Base plate – Column with end moment                                                                                                                                                                       | Sheet   | 5 of | 7               | Rev           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|-----------------|---------------|
|                                                                                                                                                                                                                        |         |      |                 |               |
| Where, $l_{eff,3} = b + 2c_3$ and $b_{eff,3} = t_f + 2c_3$<br>Here the design force ( $F_{c,r,Ed}$ ) has been used to determine $c_3$ , thus the compression resistance of the concrete under the right hand flange is |         |      |                 |               |
| $F_{c,pl,Rd} = F_{c,r,Ed} = 1309 \text{ kN}$                                                                                                                                                                           |         |      |                 |               |
| Right column flange and web in compression ( <i>F</i> <sub>c,fc,Rd</sub> )                                                                                                                                             |         | 6.2  | 2.6.7           |               |
| 6.2.8.3(5) refers to 6.2.6.7 which gives rules for connections where the flange and web are in compression, thus the resistance of the right colum flange and web in compression is:                                   |         |      |                 |               |
| $F_{\rm c,fc,Rd} = F_{\rm c,fb,Rd} = \frac{M_{\rm c,Rd}}{(h - t_{\rm fb})}$                                                                                                                                            |         | Eq   | (6.21           | )             |
| $M_{c,Rd}$ is the design bending resistance of the column obtained from BS EN 1993-1-1.                                                                                                                                |         |      |                 |               |
| $t_{\rm fb}$ is the thickness fo the beam flange, in this case $t_{\rm fb} = t_{\rm f}$                                                                                                                                |         |      |                 |               |
| Determine whether the axial force reduces the bending resistance of the section. The axial force $(N_{Ed})$ does not need to be allowed for if both th following criteria are met,                                     |         |      | EN 1<br>2.9.1(- | 993-1-1<br>4) |
| $N_{\mathrm{Ed}} \leq 0.25 N_{\mathrm{pl,Rd}}$ and $N_{\mathrm{Ed}} \leq rac{0.5 h_{\mathrm{w}} t_{\mathrm{w}} f_{\mathrm{y}}}{\gamma_{\mathrm{M0}}}$                                                                 |         |      |                 |               |
| $N_{\rm pl,Rd} = \frac{Af_y}{\gamma_{\rm M0}} = \frac{17400 \times 345}{1.0} \times 10^{-3} = 6003 \text{ kN}$                                                                                                         |         |      | EN 1<br>2.4(2)  | 993-1-1       |
| $0.25N_{\rm pl,Rd} = 0.25 \times 6003 = 1501 \rm kN$                                                                                                                                                                   |         |      |                 |               |
| $N_{\rm Ed} < 0.25 N_{\rm pl,Rd}$ (i.e. 1380 kN < 1501 kN)                                                                                                                                                             |         |      |                 |               |
| Therefore the first criterion is satisfied.                                                                                                                                                                            |         |      |                 |               |
| $h_{\rm w} = h - 2t_{\rm f} = 320.5 - 2 \times 21.7 = 277.1 \text{ mm}$                                                                                                                                                |         |      |                 |               |
| $\frac{0.5h_{\rm w}t_{\rm w}f_{\rm y}}{\gamma_{\rm M0}} = \frac{0.5 \times 277.1 \times 13.8 \times 345}{1.0} \times 10^{-3} = 659.6 \text{ kN}$                                                                       |         |      |                 |               |
| $N_{\rm Ed}$ > 659.6 kN (i.e. 1380 kN > 659.6 kN)                                                                                                                                                                      |         |      |                 |               |
| Therefore, this criterion is not satisfied, so an allowance for the axial for<br>the bending moment resistance is required.                                                                                            | orce on |      |                 |               |
| The design plastic bending resistance for the major axis is                                                                                                                                                            |         | BS   | EN 1            | 993-1-1       |
| $M_{\rm pl,y,Rd} = \frac{W_{\rm pl,y} f_y}{\gamma_{\rm M0}} = \frac{2300 \times 10^3 \times 345}{1.0} \times 10^{-6} = 794 \text{ kNm}$                                                                                |         |      | 2.5(2)<br>(6.13 | 5)            |
| Design plastic moment resistance reduced due to the effects of the axial may be found using the following approximation                                                                                                | force   |      |                 |               |
| $M_{\mathrm{N},\mathrm{y},\mathrm{Rd}} = M_{\mathrm{p},\mathrm{y},\mathrm{Rd}} \left( \frac{1-n}{1-0.5\alpha} \right) \text{ but } M_{\mathrm{N},\mathrm{y},\mathrm{Rd}} \le M_{\mathrm{p},\mathrm{y},\mathrm{Rd}}$    |         |      | EN 1<br>2.9.1(  | 993-1-1<br>5) |
|                                                                                                                                                                                                                        |         |      |                 |               |
|                                                                                                                                                                                                                        |         |      |                 |               |

| Example 20 - Base plate – Column with end moment                                                                                                                      | Sheet   | 6 of    | 7      | Rev       |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|--------|-----------|--|--|
| where:                                                                                                                                                                |         |         |        |           |  |  |
| $n = \frac{N_{\rm Ed}}{N_{\rm pl,Rd}} = \frac{1380}{6003} = 0.23$                                                                                                     |         |         |        |           |  |  |
| $\alpha = \frac{A - 2bt_{\rm f}}{A} = \frac{17400 - (2 \times 309.2 \times 21.7)}{17400} = 0.23$                                                                      |         |         |        |           |  |  |
| $M_{\rm N,y,Rd} = M_{\rm pl,y,Rd} \left( \frac{1-n}{1-0.5\alpha} \right) = 794 \times \left( \frac{1-0.23}{1-(0.5\times0.23)} \right) = 691 \text{ kNm}$<br>Therefore | m       |         |        |           |  |  |
| $M_{\rm c,Rd} = M_{\rm N,y,Rd} = 691 \text{ kNm}$                                                                                                                     |         |         |        |           |  |  |
|                                                                                                                                                                       |         |         |        |           |  |  |
| $F_{\rm c,fc,Rd} = F_{\rm c,fb,Rd} = \frac{M_{\rm c,Rd}}{(h - t_{\rm fb})}$                                                                                           |         | Eq (    | 6.21)  |           |  |  |
| Therefore the bearing resistance of the concrete under the right hand col flange and web is                                                                           | umn     |         |        |           |  |  |
| $F_{\rm c,fc,Rd} = \frac{691 \times 10^6}{(320.5 - 21.7)} \times 10^{-3} = 2313 \text{ kN}$                                                                           |         |         |        |           |  |  |
| Design compression resistance of the right hand side of the joint                                                                                                     | :       |         |        |           |  |  |
| $F_{c,pl,Rd} < F_{c,fc,Rd}$ (i.e. 1309 kN < 2313 kN)                                                                                                                  |         |         |        |           |  |  |
| Therefore the design compressive resistance $F_{c,r,Rd}$ of the right side of the is:                                                                                 | e joint | 6.2.8   | 8.3(4) | )         |  |  |
| $F_{\rm c,r,Rd} = F_{\rm c,pl,Rd} = 1309 \text{ kN}$                                                                                                                  |         |         |        |           |  |  |
| 20.6.2 Design moment resistance of column base                                                                                                                        |         |         |        |           |  |  |
| $e = \frac{M_{\rm Ed}}{M_{\rm Ed}}$                                                                                                                                   |         |         |        |           |  |  |
| $e = \frac{N - E_{d}}{N_{Ed}}$                                                                                                                                        |         | Tabl    | e 6.7  |           |  |  |
| If the moment is clockwise $M_{\rm Ed}$ is positive                                                                                                                   |         |         |        |           |  |  |
| If the axial force is tension $N_{\rm Ed}$ is positive                                                                                                                |         |         |        |           |  |  |
| Therefore                                                                                                                                                             |         |         |        |           |  |  |
| $M_{\rm Ed}$ = 185 kNm                                                                                                                                                |         |         |        |           |  |  |
| $N_{\rm Ed}$ = -1380 kN                                                                                                                                               |         |         |        |           |  |  |
| $e = \frac{185}{-1380} \times 10^3 = -134.1 \text{ mm}$                                                                                                               |         |         |        |           |  |  |
| z = 298.8  mm                                                                                                                                                         |         | Sheet 2 |        |           |  |  |
| As $N_{\rm Ed}$ < 0 and $-z_{\rm C,r}$ < $e \leq 0$                                                                                                                   |         |         |        | Table 6.7 |  |  |
| The design moment resistance of the joint $M_{j,Rd}$ is the smaller of                                                                                                |         |         |        |           |  |  |
| $\frac{-F_{C,l,Rd}z}{z_{C,r}/e+1} \text{ and } \frac{-F_{C,r,Rd}z}{z_{C,l}/e-1}$                                                                                      |         |         |        |           |  |  |
| Here the base plate is symmetrical and the moment acts clockwise, so th second of the above expressions will result in the smaller value.                             | e       |         |        |           |  |  |

| Example 20 - Base plate – Column with end moment                                                                          | Sheet  | 7 | of | 7 | Rev |
|---------------------------------------------------------------------------------------------------------------------------|--------|---|----|---|-----|
| $\frac{-F_{\rm C,r,Rd}z}{z_{\rm C,l}/e-1} = \frac{-1309 \times 298.8}{(149.4/-134.1)-1} \times 10^{-3} = 185 \text{ kNm}$ |        |   |    |   |     |
| $\frac{1}{z_{C,1}/e - 1} = \frac{1}{(149.4/-134.1) - 1} \times 10^{-1} = 185 \text{ kivin}$                               |        |   |    |   |     |
| Therefore the design moment resistance of the column base is                                                              |        |   |    |   |     |
| $M_{\rm j,Rd} = 185.0 \text{ kNm}$                                                                                        |        |   |    |   |     |
| Design moment $M_{\rm Ed} = 185$ kNm                                                                                      |        |   |    |   |     |
| $\frac{M_{\rm Ed}}{M_{\rm j,Rd}} = \frac{185}{185} = 1.0$                                                                 |        |   |    |   |     |
| Therefore, the design moment resistance of the joint is adequate.                                                         |        |   |    |   |     |
| 20.6.3 Dimensions of base plate                                                                                           |        |   |    |   |     |
| Plan dimensions                                                                                                           |        |   |    |   |     |
| $l_{\text{eff,r}} = b + 2c_3 = 309.2 + (2 \times 85.2) = 479.6 \text{ mm} < 600 \text{ mm}$                               |        |   |    |   |     |
| $b_{\text{eff}} = h + 2c_3 = 320.5 + (2 \times 85.2) = 190.9 \text{ mm} < 600 \text{ mm}$                                 |        |   |    |   |     |
| Therefore a $600 \times 600$ base plate is adequate.                                                                      |        |   |    |   |     |
| Thickness                                                                                                                 |        |   |    |   |     |
| As the verification for the maximum allowable value of $c$ was satisfied                                                  |        |   |    |   |     |
| Section 20.6.1 of this example, a base plate thickness of 40 mm is adec                                                   | juate. |   |    |   |     |
|                                                                                                                           |        |   |    |   |     |
|                                                                                                                           |        |   |    |   |     |
|                                                                                                                           |        |   |    |   |     |
|                                                                                                                           |        |   |    |   |     |
|                                                                                                                           |        |   |    |   |     |
|                                                                                                                           |        |   |    |   |     |
|                                                                                                                           |        |   |    |   |     |
|                                                                                                                           |        |   |    |   |     |
|                                                                                                                           |        |   |    |   |     |
|                                                                                                                           |        |   |    |   |     |
|                                                                                                                           |        |   |    |   |     |
|                                                                                                                           |        |   |    |   |     |
|                                                                                                                           |        |   |    |   |     |
|                                                                                                                           |        |   |    |   |     |
|                                                                                                                           |        |   |    |   |     |
|                                                                                                                           |        |   |    |   |     |
|                                                                                                                           |        |   |    |   |     |
|                                                                                                                           |        |   |    |   |     |
|                                                                                                                           |        |   |    |   |     |
|                                                                                                                           |        |   |    |   |     |

# REFERENCES

## Eurocode Parts:

All the following Parts have been published by BSI with their respective UK National Annexes.

BS EN 1990 Eurocode - Basis of structural design

| BS EN 1991 Eurocode                   | 1: Actions on structures                                                                                |
|---------------------------------------|---------------------------------------------------------------------------------------------------------|
| BS EN 1991-1-1                        | Part 1-1: General actions. Densities, self-weight, imposed loads for buildings                          |
| BS EN 1991-1-2                        | Part 1-2: General actions. Actions on structures exposed to fire                                        |
| BS EN 1991-1-3                        | Part 1-3: General actions. Snow loads                                                                   |
| BS EN 1991-1-4                        | Part 1-4: General actions. Wind actions                                                                 |
| BS EN 1991-1-5                        | Part 1-5: General actions. Thermal actions                                                              |
| BS EN 1991-1-6                        | Part 1-6: General actions. Actions during execution                                                     |
| BS EN 1991-1-7                        | Part 1-7: General actions. Accidental actions                                                           |
| BS EN 1992 Eurocode                   | 2: Design of concrete structures                                                                        |
| BS EN 1992-1-1                        | Part 1-1: General rules and rule for buildings                                                          |
| BS EN 1992-1-2                        | Part 1-2: General rules - Structural fire design                                                        |
| BS EN 1993 Eurocode                   | 3: Design of steel structures                                                                           |
| BS EN 1993-1-1                        | Part 1-1: General rules and rules for buildings                                                         |
| BS EN 1993-1-2                        | Part 1-2: General rules – Structural fire design                                                        |
| BS EN 1993-1-3                        | Part 1-3: General rules – Supplementary rules for cold-<br>formed members and sheeting                  |
| BS EN 1993-1-5                        | Part 1-5: Plated structural elements                                                                    |
| BS EN 1993-1-8                        | Part 1-8: Design of joints                                                                              |
| BS EN 1993-1-9                        | Part 1-9: Fatigue                                                                                       |
| BS EN 1993-1-10                       | Part 1-10: Material toughness and through-thickness properties                                          |
| BS EN 1993-1-12                       | Part 1-12: Additional rules for the extension of BS EN 1993 up to steel grades S700                     |
|                                       |                                                                                                         |
| BS EN 1994 Eurocode                   | 4: Design of composite steel and concrete structures                                                    |
| BS EN 1994 Eurocode<br>BS EN 1994-1-1 | 4: Design of composite steel and concrete structures<br>Part 1-1: General rules and rules for buildings |

### **Product Standards**

The following product standard has been published by BSI as BS EN 10025-2.

BS EN 10025-2:2004 Hot rolled products of structural steels. Part 2: Technical delivery conditions for non-alloy structural steels

#### SCI publications

1. Design of floors for vibration: A new approach. Revised Edition (P354) The Steel Construction Institute, 2009

The publications listed below are in accordance with Eurocodes and the UK National Annexes

- 2. Steel building design: Introduction to the Eurocodes (P361) SCI, 2009
- 3. Steel building design: Concise Eurocodes (P362), SCI, 2009
- 4. Steel building design: Design data (P363) SCI and BCSA, 2009
- 5. Steel building design: Medium-rise braced frames (P365) SCI, 2009
- 6. Steel building design: Worked examples Hollow sections (P374) SCI, 2009
- 7. Steel building design: Fire resistance design (P375) SCI, 2009
- 8. Steel building design: Worked examples for students (P387) SCI, 2009
- Joints in steel construction: Simple connections in accordance with Eurocode 3 (P358) SCI & BCSA, to be published in 2010
- 10. Steel building design: Composite members (P359) SCI, to be published in 2010
- 11. Steel building design: Stability of beams and columns (P360) SCI, to be published in 2010
- 12. Handbook of structural steelwork Eurocode Edition (P366) BCSA & SCI, to be published in 2010
- 13. Steel building design: Combined bending and torsion (P385) SCI, *to be published in 2010*

#### **Published Document**

The following document is published by BSI.

PD 6695-1-10 Recommendations for the design of structures to BS EN 1993-1-10 BSI, 2009

#### Access Steel documents

The following documents are available from www.access-steel.com.

SN002 NCCI: Determination of non-dimensional slenderness of I and H sections

SN003 NCCI: Elastic critical moment for lateral torsional buckling

SN005 NCCI: Determination of moments on columns in simple construction

SN014 NCCI: Shear resistance of a simple end plate connection

SN015 NCCI: Tying resistance of a simple end plate connection

SN017 NCCI: Shear resistance of a fin plate connection

SN018 NCCI: Tying resistance of a fin plate connection

SN020 NCCI: "Simple Construction" - concept and typical frame arrangements

SN048 NCCI: Verification of columns in simple construction – a simplified interaction criterion (GB). (*This is a localized resource for UK*)