# **STEEL BUILDINGS IN EUROPE**

Single-Storey Steel Buildings Part 6: Detailed Design of Built-up Columns

## FOREWORD

This publication is part six of the design guide, *Single-Storey Steel Buildings*.

The 11 parts in the Single-Storey Steel Buildings guide are:

- Part 1: Architect's guide
- Part 2: Concept design
- Part 3: Actions
- Part 4: Detailed design of portal frames
- Part 5: Detailed design of trusses
- Part 6: Detailed design of built-up columns
- Part 7: Fire engineering
- Part 8: Building envelope
- Part 9: Introduction to computer software
- Part 10: Model construction specification
- Part 11: Moment connections

*Single-Storey Steel Buildings* is one of two design guides. The second design guide is *Multi-Storey Steel Buildings*.

The two design guides have been produced in the framework of the European project "Facilitating the market development for sections in industrial halls and low rise buildings (SECHALO) RFS2-CT-2008-0030".

The design guides have been prepared under the direction of Arcelor Mittal, Peiner Träger and Corus. The technical content has been prepared by CTICM and SCI, collaborating as the Steel Alliance.



Figure 3.3 Bending moments and shear forces in a panel of a battened built-up column

#### Initial bow imperfection

The initial bow imperfection  $e_0$  is:

$$e_0 = L/500$$

where:

*L* is the length of the built-up member

#### Maximum axial compressive force in the chords

The maximum axial compression  $N_{ch,Ed}$  in the chords is calculated from the expression given in 3.2.1.

#### 3.3.2 Step 2: In-plane buckling resistance of a chord Classification of the cross-section of the chord

The cross-section of the chord is classified according to EN 1993-1-1 Table 5.2.

#### Buckling resistance of a chord about z-z axis

The resistance of the chord has to be verified for bending and axial compression and for buckling in the plane of the built-up member, i.e. about the weak axis of the cross-section of the chord (z-z axis), according to

EN 1993-1-1 § 6.3.3. Depending on the geometry of the battened built-up member, the verifications should be performed for different segments of the chord:

- For an end panel with the maximum shear force and thus the maximum local bending moment
- For a panel located at mid-height where the compression axial force may be maximum in the chord.

#### 3.3.3 Step 3: Out-of-plane buckling resistance of the chords

The out-of-plane buckling resistance is verified using the following criterion:

$$\frac{N_{\rm ch,Ed}}{N_{\rm b,y,Rd}} \le 1$$

where:

 $N_{b,y,Rd}$  is the design buckling resistance of the chord about the strong axis of the cross-section, calculated according to EN 1993-1-1 § 6.3.1.

The buckling length depends on the support conditions of the built-up member for out-of-plane buckling. At the ends of the member, the supports are generally considered as pinned. However intermediate lateral restraints may be provided.

#### 3.3.4 Step 4: Shear force

The shear force  $V_{\text{Ed}}$  is calculated from the maximum bending moment as for a laced built-up member, according to §3.2.4 of this guide.

#### 3.3.5 Step 5: Resistance of the battens

As shown in Figure 3.3, the battens should be designed to resist the shear force:

$$V_{\rm Ed} \frac{a}{h_0}$$

And the bending moment:

$$M_{\rm Ed} = \frac{V_{\rm Ed}a}{2}$$

The cross-section classification should be determined according to EN 1993-1-1 Table 5.2, for pure bending. The section resistance should be verified using the appropriate criteria given EN 1993-1-1 § 6.2.

#### 3.3.6 Step 5: Resistance of the batten-to-chord connections

The resistance of the connections between the battens and the chords has to be verified according to EN 1993-1-8. This verification depends on the details of the connection: bolted connection or welded connection. This verification is performed using the internal forces calculated in the previous steps.

#### 3.3.7 Flowchart



Figure 3.4 Flowchart of the design methodology for battened built-up columns

## 3.4 Buckling length

## 3.4.1 Laced compression members

#### Chords

According to EN 1993-1-1 Annex BB, the buckling length  $L_{cr}$  of a rolled I or H section chord member of built-up columns is taken as 0,9*L* for in-plane buckling and 1,0*L* for out-of-plane buckling. These values may be reduced if it is justified through detailed analysis.

L is the distance in a given plane between two adjacent points at which a member is braced against displacement in this plane, or between one such point and the end of the member.

#### Web members

Angles are mostly used as web members.

Provided that the chords supply appropriate end restraint to web members in compression made of angles and the end connections supply appropriate fixity (at least 2 bolts if bolted), the buckling length  $L_{cr}$  for in-plane buckling is taken as 0,9*L*, where *L* is the system length between joints.

When only one bolt is used for end connections of angle web members, the eccentricity should be taken into account and the buckling length  $L_{cr}$  is taken equal to the system length L.

The effective slenderness ratio  $\overline{\lambda}_{eff}$  of angle web members is given in EN 1993-1-1 § BB.1.2 as follows:

$$\overline{\lambda}_{\rm eff} = 0.35 + 0.7\overline{\lambda}$$

where:

 $\overline{\lambda}$  is the non-dimensional slenderness defined in EN 1993-1-1 § 6.3.

For sections other than angles, the web members may be designed for in-plane buckling using a buckling length smaller than the system length and using the non-dimensional slenderness as defined in EN 1993-1-1 § 6.3, provided that the chords provide appropriate end restraint and the end connections provide appropriate fixity (at least 2 bolts if bolted). In practice, the buckling length  $L_{cr}$  of a rolled profile is equal to the distance between joints for in-plane buckling and for out-of-plane buckling.

#### 3.4.2 Battened compression members

For simplicity, any potential restraint at the ends of the columns is neglected and the buckling length of the chords may be taken as the system length.

# REFERENCES

- 1 EN 1993-1-1:2005 Eurocode 3 Design of Steel structures. General rules and rules for buildings
- 2 EN 1993-1-8:2005 Eurocode 3 Design of Steel structures. Design of joints

Part 6: Detailed design of built up columns

# **APPENDIX A**

# Worked Example: Design of a laced built-up column

| Signature APPENDIX A. Worked Example: Design of a laced built-up column                           |                                                                                                                           |                                                           | 1 of 12          |              |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------|--------------|
| Amarice                                                                                           |                                                                                                                           | Made by                                                   | DC               | Date 02/2009 |
| Calculation sheet                                                                                 |                                                                                                                           | Checked by                                                | AB               | Date 03/2009 |
| <b>1.</b> Introduct This worked example                                                           | tion<br>deals with the verification of a t                                                                                | ypical built-up c                                         | olumn            |              |
| under compressive ax<br>carried out according<br>the recommended val                              | ial force and bending moment. T<br>to EN 1993-1-1. No National Ar<br>ues of EN 1993-1-1 are used in t                     | The calculations inex is considered he calculations.      | are<br>ed and    |              |
| The calculations are p<br>Section 3.2 of this gui                                                 | erformed according to the designed.                                                                                       | n methodology §                                           | given in         |              |
| 2. Descript                                                                                       | ion                                                                                                                       |                                                           |                  |              |
| The geometry of the b<br>Figure A.2. For the m<br>force and a bending m<br>are applied at the top | puilt-up column is described in F<br>ost unfavourable ULS combinat<br>noment about the strong axis of t<br>of the column. | igure A.1 and in<br>ion of actions, and<br>he compound se | n axial<br>ction |              |
| N <sub>Ed</sub> = 900 kN                                                                          | Nm                                                                                                                        |                                                           |                  |              |
|                                                                                                   | N.M                                                                                                                       |                                                           |                  |              |
|                                                                                                   | 1 Lateral restraints                                                                                                      |                                                           |                  |              |
| Figure A.1 Design m                                                                               | odel                                                                                                                      |                                                           |                  |              |
| The built-up column i<br>and at mid-height.                                                       | s restrained against out-of-plane                                                                                         | buckling at both                                          | n ends           |              |
|                                                                                                   |                                                                                                                           |                                                           |                  |              |



| Title                                                                       | APPENDIX A. Worked Example: Design of a laced built-up column                                                                               | 3 of 12                   |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 3. Ste<br>in t                                                              | p 1: Maximum compressive axial force he chords                                                                                              |                           |
| 3.1. Effe                                                                   | ctive second moment of area                                                                                                                 |                           |
| The effective axis is calcula                                               | second moment of area of the built-up section about the strong ated using the following expression:                                         | EN 1002 1 1               |
| $I_{\rm eff} = 0,5 h_0^2 A$                                                 | ch                                                                                                                                          | § 6.4.2.1                 |
| where:                                                                      |                                                                                                                                             |                           |
| $A_{\rm ch}$ is the                                                         | section area of a chord                                                                                                                     |                           |
| $h_0$ is the                                                                | distance between the centroids of the chords                                                                                                |                           |
| The value of                                                                | the effective second moment of area is:                                                                                                     |                           |
| $I_{\rm eff} = 0,5 \times 80$                                               | $^2 \times 64,3 = 205800 \text{ cm}^4$                                                                                                      |                           |
|                                                                             |                                                                                                                                             |                           |
| 3.2. She                                                                    | ear stiffness                                                                                                                               |                           |
| For N-shaped                                                                | arrangement of lacings, the expression of shear stiffness is:                                                                               |                           |
| $S_{\rm v} = \frac{nEA_{\rm d}a}{d^3 \left[1 + \frac{A_{\rm d}}{A}\right]}$ | $\frac{h_0^2}{h_0^4 h_0^3}$                                                                                                                 | EN 1993-1-1<br>Figure 6.9 |
| where:                                                                      |                                                                                                                                             |                           |
| $d = \sqrt{h_0^2}$                                                          | $a^2 + a^2 = \sqrt{0.8^2 + 1.25^2} = 1.48 \text{ m}$                                                                                        |                           |
| <i>n</i> is the                                                             | number of planes of lacings $(n = 2)$                                                                                                       |                           |
| $A_{\rm d}$ is the                                                          | section area of the diagonals                                                                                                               |                           |
| $A_{\rm v}$ is the                                                          | section area of the posts.                                                                                                                  |                           |
| Therefore:                                                                  |                                                                                                                                             |                           |
| $S_{v} = \frac{2 \times 2100}{1480}$                                        | $\frac{000 \times 1552 \times 1250 \times 800^{2}}{0^{3} \left[1 + \frac{1552 \times 800^{3}}{1227 \times 1480^{3}}\right]} \times 10^{-3}$ |                           |
| $S_{\rm v} = 134100  {\rm k}$                                               | κN                                                                                                                                          |                           |
| 3.3. Initi                                                                  | al bow imperfection                                                                                                                         |                           |
| The initial bo                                                              | w imperfection is taken equal to:                                                                                                           |                           |
| $e_0 = L/500 = 1$                                                           | 10000/500 = 20  mm                                                                                                                          |                           |
|                                                                             |                                                                                                                                             | EN 1993-1-1<br>§ 6.4.1(1) |
|                                                                             |                                                                                                                                             |                           |

EN 1993-1-1 § 6.4.1(6)

## **3.4.** Maximum axial compressive force in the chords

The maximum compressive axial force in the chords,  $N_{ch,Ed}$ , is determined at mid height of the built-up column as follows:

$$N_{\rm ch,Ed} = \frac{N_{\rm Ed}}{2} + \frac{M_{\rm Ed}h_0A_{\rm ch}}{2I_{\rm eff}}$$

where:

$$M_{\rm Ed} = \frac{N_{\rm Ed} e_0 + M_{\rm Ed}^1}{1 - \frac{N_{\rm Ed}}{N_{\rm cr}} - \frac{N_{\rm Ed}}{S_{\rm v}}}$$

 $N_{\rm cr}$  is the effective critical axial force of the built up member:

$$N_{\rm cr} = \frac{\pi^2 E I_{\rm eff}}{L^2} = \frac{\pi^2 \times 210000 \times 205800 \times 10^4}{10000^2} \times 10^{-3} = 42650 \text{ kN}$$

The maximum bending moment, including the bow imperfection and the second order effects is:

$$M_{\rm Ed} = \frac{900 \times 0.02 + 450}{1 - \frac{900}{42650} - \frac{900}{134100}} = 481.4 \,\rm kNm$$

In the most compressed chord, the axial force is:

$$N_{\rm ch,Ed} = \frac{900}{2} + \frac{481,4 \times 0,8 \times 64,34 \times 10^{-4}}{2 \times 205800 \times 10^{-8}} = 1052 \text{ kN}$$

# 4. Step 2: In-plane buckling resistance of the chord

### 4.1. Classification of the cross-section of the chord

 $\varepsilon$  = 0,81 for steel grade S355

| Flange slenderness: | $c/t_{\rm f} = 88,5 / 11 = 8,05$ |         | < 10 & = 8,10 |      | Class 2 |    |   |
|---------------------|----------------------------------|---------|---------------|------|---------|----|---|
| XX7 1 1 1           | 1.                               | 150 / 7 | 217           | < 22 | 26 72   | CI | 1 |

Web slenderness:  $c/t_{\rm w} = 152 / 7 = 21,7 < 33 \varepsilon = 26,73$  Class 1

Therefore the cross-section is Class 2 for pure compression.

## 4.2. Buckling resistance of a chord

The buckling resistance of the most compressed chord is verifed according to EN 1993-1-1 § 6.3.1 for buckling about the weak axis of the cross-section, i.e. about the z-z axis.

The buckling length of a hot-rolled H-section member can be taken equal to 0,9 a for in-plane buckling, where a is the system length between two nodes of the built-up column.

| Title                                                                          | APPENDIX A. Worked Example: Design of a laced built-up column                                                                          | 5 of 12                     |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Buckling leng                                                                  | EN 1002 1 1                                                                                                                            |                             |
| $L_{\rm cr,z} = 0,9 \ a =$                                                     | BB.1.1(2)B                                                                                                                             |                             |
| The slenderne                                                                  | ess is:                                                                                                                                |                             |
| $\lambda_{\rm z} = \frac{L_{{ m cr},z}}{i_{ m z}}$                             |                                                                                                                                        |                             |
| where                                                                          |                                                                                                                                        |                             |
| $i_z$ is the axis.                                                             | radius of gyration of the gross cross-section, about the weak                                                                          |                             |
| therefore: $\lambda_z$                                                         | $=\frac{1125}{55,1}=20,42$                                                                                                             |                             |
| $\lambda_{ m l}=\pi\sqrt{rac{E}{f_{ m y}}}=$                                  | 93,9 $\varepsilon$ With: $\varepsilon = 0.81$ for steel grade S355                                                                     |                             |
| $\lambda_1 = 93,9 \times 0,8$                                                  | 31 = 76,06                                                                                                                             |                             |
| The non-dime                                                                   | ensional slenderness is:                                                                                                               |                             |
| $\overline{\lambda}_{z} = \frac{\lambda_{z}}{\lambda_{1}} = \frac{20.4}{76.0}$ | $\frac{12}{16} = 0,268$                                                                                                                |                             |
| Buckling curv                                                                  | ve c for buckling about the weak axis, since:                                                                                          | EN 1993-1-1                 |
| Steel grade                                                                    | e \$355                                                                                                                                | Table 6.2                   |
| <i>h/b</i> < 1,2                                                               |                                                                                                                                        |                             |
| $t_{\rm f} < 100 {\rm mm}$                                                     | m                                                                                                                                      |                             |
| The imperfec                                                                   | tion factor is: $\alpha_z = 0.49$                                                                                                      |                             |
| The reduction                                                                  | factor $\chi_z$ can be calculated from the following expressions:                                                                      | EN 1993-1-1<br>§ 6.3.1.2(1) |
| $\phi_z = 0.5 \left[ 1 + \alpha_z \right]$                                     | $\left(\overline{\lambda}_z - 0, 2\right) + \overline{\lambda}_z^2 = 0,5 \left[1 + 0,49 \times (0,268 - 0,2) + 0,268^2\right] = 0,553$ |                             |
| $\chi_z = \frac{1}{\phi_z + \sqrt{\phi_z}}$                                    | $\frac{1}{2^{2} + \overline{\lambda}_{z}^{2}} = \frac{1}{0.553 + \sqrt{0.553^{2} - 0.268^{2}}} = 0.965$                                |                             |
| The design bu                                                                  | ackling resistance is equal to:                                                                                                        |                             |
| $N_{\rm b,z,Rd} = \frac{\chi_z A_{\rm c}}{\gamma_{\rm N}}$                     |                                                                                                                                        |                             |
| The resistance                                                                 |                                                                                                                                        |                             |
| $\frac{N_{\rm ch,Ed}}{N_{\rm b,z,Rd}} = \frac{1052}{2200}$                     | $\frac{2}{3} = 0,477 < 1$ OK                                                                                                           |                             |
|                                                                                |                                                                                                                                        |                             |

| Title                                                                                            | APPENDIX A. Worked Example: Design of a laced built-up column                                                                                          | 6 of 12      |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 5. Ste the                                                                                       |                                                                                                                                                        |              |
| The built-up of height. There is the chords is take                                              | column is pinned at both ends and is laterally supported at mid-<br>fore the buckling length for buckling about the strong axis of the<br>in equal to: |              |
| $L_{\rm cr,y} = L/2 = 10$                                                                        | 0000/2 = 5000  mm                                                                                                                                      |              |
| The slenderne                                                                                    | ess is:                                                                                                                                                |              |
| $\lambda_{\rm y} = rac{L_{ m cr,y}}{i_{ m y}}$                                                  |                                                                                                                                                        |              |
| where                                                                                            |                                                                                                                                                        |              |
| <i>i</i> y is the axis.                                                                          | radius of gyration of the gross cross-section, about the strong                                                                                        |              |
| Therefore:                                                                                       |                                                                                                                                                        |              |
| $\lambda_{\rm y} = \frac{L_{\rm cr,y}}{i_{\rm y}} = \frac{5}{2}$                                 | $\frac{5000}{91,7} = 54,53$                                                                                                                            |              |
| $\lambda_1 = 93,9 \varepsilon =$                                                                 | 76,06                                                                                                                                                  |              |
| The non-dimension $\overline{\lambda}_{y} = \frac{\lambda_{y}}{\lambda_{1}} = \frac{54,5}{76,0}$ | nsional slenderness is:<br>$\frac{3}{6} = 0,717$                                                                                                       |              |
| Buckling curv                                                                                    | We $b$ for buckling about the strong axis, since:                                                                                                      |              |
| Steel grade                                                                                      | e \$355                                                                                                                                                |              |
| <i>h/b</i> < 1,2                                                                                 |                                                                                                                                                        |              |
| $t_{\rm f} < 100 \ {\rm mm}$                                                                     | m                                                                                                                                                      |              |
| The imperfect                                                                                    | tion factor is: $\alpha_y = 0.34$                                                                                                                      |              |
| The reduction                                                                                    | factor $\chi_{v}$ can be calculated from the following expressions:                                                                                    | EN 1993-1-1  |
| $\phi_{y} = 0.5 \left[ 1 + \alpha_{y} \right]$                                                   | $\left(\overline{\lambda}_{y}-0,2\right)+\overline{\lambda}_{y}^{2}$ = 0,5[1+0,34×(0,717-0,2)+0,717 <sup>2</sup> ]=0,845                               | § 6.3.1.2(1) |
| $\chi_{y} = \frac{1}{\phi_{y} + \sqrt{\phi}}$                                                    | $\frac{1}{0,y^2 + \overline{\lambda}_y^2} = \frac{1}{0,845 + \sqrt{0,845^2 - 0,717^2}} = 0,774$                                                        |              |
| The design bu                                                                                    | ackling resistance is equal to:                                                                                                                        |              |
| $N_{\rm b,y,Rd} = \frac{\chi_{\rm y} A_{\rm c}}{\gamma_{\rm M}}$                                 | $\frac{f_y}{f_1} = \frac{0.774 \times 6430 \times 355}{1.0} \times 10^{-3} = 1767 \mathrm{kN}$                                                         |              |
| The resistance                                                                                   | e criterion is:                                                                                                                                        |              |
| $\frac{N_{\rm ch,Ed}}{N_{\rm b,y,Rd}} = \frac{1052}{1767}$                                       | $\frac{2}{7} = 0,595 < 1$ OK                                                                                                                           |              |

Title

## 6. Step 4: Maximum shear force

The maximum compressive axial force is obtained in the diagonals of the end panels of the built-up column. It depends on the shear force in this panel. The shear force can be assessed by the following expression:

$$V_{\rm Ed} = \frac{1}{L} \left( 4 - (4 - \pi) \frac{e_{\rm o} N_{\rm Ed}}{e_{\rm o} N_{\rm Ed} + M_{\rm Ed}^{\,I}} \right) M_{\rm Ed}^{\,II}$$

where:

L = 10 m  $e_0 = 0,02 \text{ m}$   $N_{\text{Ed}} = 900 \text{ kN}$   $M_{\text{Ed}}^{1} = 450 \text{ kNm}$  $M_{\text{Ed}}^{\text{II}} = 482 \text{ kNm}$ 

Therefore:

$$V_{\rm Ed} = \frac{1}{10} \left( 4 - (4 - \pi) \frac{0.02 \times 900}{0.02 \times 900 + 450} \right) \times 482 = 191.2 \text{ kN}$$

# 7. Step 5: Buckling resistance of the web members in compressive

### 7.1. Diagonals

### 7.1.1. Maximum compression axial force

The expression of the compression axial force  $N_{d,Ed}$  in a diagonal is derived from the shear force as follows:

$$N_{\rm d,Ed} = \frac{V_{\rm Ed} \cos \varphi}{n} = \frac{V_{\rm Ed} d}{n h_0}$$

where:

$$h_0 = 800 \text{ mm}$$

$$d = 1480 \text{ mm}$$

*n* is the number of plans of lacings: 
$$n = 2$$

then:

$$N_{\rm d,Ed} = \frac{191,2 \times 1480}{2 \times 800} = 176,86 \,\rm kN$$

| Title                                                                | APPENDIX A. Worked Example: Design of a laced built-up column                                                                                                                                                      | 8 of 12                  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 7.1.2. Clas                                                          |                                                                                                                                                                                                                    |                          |
| h/t = 90                                                             | $9 = 10$ < 15 $\varepsilon = 12,15$                                                                                                                                                                                |                          |
| (b+h) / (2t) =                                                       | $(90+90) / (2 \times 9) = 10$ > 11,5 $\varepsilon = 9,31$ Class 4                                                                                                                                                  | EN 1993-1-1<br>Table 5.2 |
| Although the<br>Sheet 3, the c<br>section area is<br>Class 3 Section | cross-section is Class 4, according to EN 1993-1-1 Table 5.2<br>alculation of the effective section area leads to no reduction. The<br>s therefore fully effective and the calculation is the same as for a<br>on. | Sheet 3                  |
| 7.1.3. Buc                                                           | kling resistance of a diagonal                                                                                                                                                                                     |                          |
| The non dime<br>§ BB.1.2 in so<br>stiff enough to                    | ensional slenderness can be calculated according to EN 1993-1-1<br>of ar as the diagonals are welded at both ends and the chords are<br>of ensure that the ends are clamped.                                       |                          |
| Slenderness a                                                        | bout the weakest axis:                                                                                                                                                                                             |                          |
| $\lambda_{\rm v} = \frac{d}{i_{\rm v}} = \frac{148}{17.5}$           | $\frac{0}{5} = 84,57$                                                                                                                                                                                              |                          |
| Non dimensio                                                         | onal slenderness                                                                                                                                                                                                   |                          |
| $\overline{\lambda}_{v} = \frac{\lambda}{93,9\varepsilon} =$         | $\frac{84,57}{93,9\times0,81} = 1,112$                                                                                                                                                                             |                          |
| Effective non                                                        | dimensional slenderness                                                                                                                                                                                            | EN 1993-1-1              |
| $\overline{\lambda}_{\rm eff,v} = 0,35 +$                            | $0.7\overline{\lambda}_{v} = 0.35 + 0.7 \times 1.112 = 1.128$                                                                                                                                                      | § BB.1.2                 |
| Buckling curv                                                        | we $b$ is used for the determination of the reduction factor:                                                                                                                                                      |                          |
| $\alpha_{\rm v}=0,34$                                                |                                                                                                                                                                                                                    |                          |
| Therefore:                                                           |                                                                                                                                                                                                                    | EN 1993-1-1              |
| $\phi_{\rm v} = 0.5 \left[ 1 + \alpha \right]$                       | $\overline{\lambda}_{\rm eff,v} - 0,2 + \overline{\lambda}_{\rm eff,v}^2 = 0,5 \times \left[1 + 0,34 \times (1,128 - 0,2) + 1,128^2\right] = 1,294$                                                                | ş 0.3.1                  |
| $\chi_{\rm v} = rac{1}{\phi_{ m v} + \sqrt{\phi_{ m v}}}$           | $\frac{1}{1^{2} + \overline{\lambda}_{\text{eff},v}^{2}} = \frac{1}{1,294 + \sqrt{1,294^{2} - 1,128^{2}}} = 0,519$                                                                                                 |                          |
| The design bu                                                        | ackling resistance of a compression member is equal to:                                                                                                                                                            |                          |
| $N_{\rm b-d,Rd} = \frac{\chi_{\rm v} A}{\gamma_{\rm N}}$             | $\frac{df_y}{dt} = \frac{0.519 \times 1552 \times 355}{1.0} \times 10^{-3} = 285.9 \text{ kN}$                                                                                                                     |                          |
| The resistance                                                       | e criterion is:                                                                                                                                                                                                    |                          |
| $\frac{N_{\rm d,Ed}}{N_{\rm b-d,Rd}} \le 1 \Leftrightarrow$          | $\frac{176,8}{285,9} = 0,62 < 1 \qquad \text{OK}$                                                                                                                                                                  |                          |
|                                                                      |                                                                                                                                                                                                                    |                          |
|                                                                      |                                                                                                                                                                                                                    |                          |
|                                                                      |                                                                                                                                                                                                                    |                          |
|                                                                      |                                                                                                                                                                                                                    |                          |

| Title                                                                                      | APPENDIX A. Worked Example: Design of a laced built-up column                                                                                                                                   | 9 of 12     |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7.2. Pos                                                                                   | sts                                                                                                                                                                                             |             |
| 7.2.1. Max                                                                                 | imum compressive axial force                                                                                                                                                                    |             |
| The maximur                                                                                | n compressive axial force is:                                                                                                                                                                   |             |
| $N_{\rm h,Ed} = V_{\rm Ed} =$                                                              | 191,2 kN                                                                                                                                                                                        |             |
| 7.2.2. Clas                                                                                | sification of the cross-section                                                                                                                                                                 |             |
| h/t = 80 / 8 =                                                                             | 10 < 15 $\varepsilon$ = 12,15                                                                                                                                                                   | EN 1002 1 1 |
| (b+h) / (2t) =                                                                             | $(80+80) / (2 \times 8) = 10$ > 11,5 $\varepsilon = 9,31$ Class 4                                                                                                                               | Table 5.2   |
| Although the<br>Sheet 3, the c<br>section area is<br>Class 3 sectio                        | Sheet 3                                                                                                                                                                                         |             |
| 7.2.3. Buc                                                                                 | kling resistance                                                                                                                                                                                |             |
| The buckling                                                                               | length is equal to:                                                                                                                                                                             |             |
| $L_{\rm cr} = h_0 = 800$                                                                   | mm                                                                                                                                                                                              |             |
| Slenderness a                                                                              | bout the weakest axis:                                                                                                                                                                          |             |
| $\lambda_{\rm v} = \frac{L_{\rm h,y}}{i_{\rm v}} = \frac{80}{15}$                          | $\frac{00}{5,6} = 51,28$                                                                                                                                                                        |             |
| Non dimensio                                                                               | onal slenderness:                                                                                                                                                                               |             |
| $\overline{\lambda}_{v} = \frac{\lambda_{v}}{93,9\varepsilon} =$                           | $\frac{51,28}{93,9\times0,81} = 0,674$                                                                                                                                                          |             |
| Effective non                                                                              | dimensional slenderness:                                                                                                                                                                        | EN 1993-1-1 |
| $\overline{\lambda}_{\rm eff,v} = 0,35 +$                                                  | $0,7\overline{\lambda}_{v} = 0,35 + 0,7 \times 0,674 = 0,822$                                                                                                                                   | § BB.1.2    |
| The buckling<br>$\alpha = 0,34$<br>Therefore:<br>$\phi_{v} = 0.5 \left[1 + \alpha \right]$ | curve <b>b</b> is used for the determination of the reduction factor:<br>$\bar{\lambda}_{eff,v} - 0,2 + \bar{\lambda}_{eff,v}^2 = 0.5 \times [1 + 0.34 \times (0.822 - 0.2) + 0.822^2] = 0.943$ |             |
|                                                                                            |                                                                                                                                                                                                 |             |
| $\chi_{v} = \frac{1}{\phi_{v} + \sqrt{\phi_{v}}}$                                          |                                                                                                                                                                                                 |             |
| The design bu                                                                              |                                                                                                                                                                                                 |             |
| $N_{\rm b,Rd} = \frac{\chi_{\rm v} A_{\rm h} j}{\gamma_{\rm M1}}$                          | $\frac{f_y}{1,0} = \frac{0,712 \times 1227 \times 355}{1,0} \times 10^{-3} = 310 \text{ kN}$                                                                                                    |             |
|                                                                                            |                                                                                                                                                                                                 |             |

EN 1993-1-1 §6.2.3

The resistance criterion is:

$$\frac{N_{\rm h,Ed}}{N_{\rm b,Rd}} = \frac{191,2}{310} = 0,62 < 1 \qquad \text{OK}$$

# 8. Step 6: Resistance of the web members in tension

It is necessary to verify the resistance of the diagonals in tension, even if this situation is generally less critical than compression.

The verification of these members includes the verification of the resistance of the cross-section and the verification of the resistance of the net section for bolted connections.

Maximum design value of the tensile axial force:

 $N_{\rm t,Ed} = 176,8 \text{ kN}$ 

The resistance criterion is:

$$\frac{N_{\rm t,Ed}}{N_{\rm t,Rd}} \le 1,0$$

The design tension resistance  $N_{t,Rd}$  is taken as the design plastic resistance of the gross cross-section:

$$N_{t,Rd} = N_{pl,Rd} = \frac{A_d f_y}{\gamma_{M_0}} = \frac{1552 \times 355}{1,0} \times 10^{-3} = 551 \,\text{kN}$$

The resistance criterion is:

$$\frac{N_{\rm Ed}}{N_{\rm t,Rd}} = \frac{176,8}{551,0} = 0,32 < 1,0 \quad \text{OK}$$

Title

**APPENDIX A. Worked Example: Design of a laced built-up column** 

11 of 12

Title

| $f_{\rm u}$ is the ultimate tensile strength of the weaker part:<br>$f_{\rm u} = 510 \text{ N/mm}^2$<br>$f_{\rm u}$ is the appropriate correlation factor: | .993-1-1<br>e 3.1 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| $\beta_{\rm W} = 0.9$ for steel grade S355<br>$\gamma_{\rm M2} = 1.25$ EN1<br>EN1<br>Table                                                                 | 993-1-8<br>e 4.1  |
| therefore:                                                                                                                                                 |                   |
| $f_{\rm vw,d} = \frac{f_{\rm u}/\sqrt{3}}{\beta_{\rm w}\gamma_{\rm M2}} = \frac{510/\sqrt{3}}{0.9 \times 1.25} = 261.7 \text{ N/mm}^2$                     |                   |
| $F_{\rm w,Rd} = f_{\rm vw,d}a = 261,7 \times 5 = 785,2 \text{ N/mm}$                                                                                       |                   |
| $F_{\rm w,Ed} = \frac{N_{\rm d,Ed}}{\sum l_{\rm eff}} = \frac{176800}{(2 \times 150 + 90)} = 453,3 \mathrm{N/mm}$                                          |                   |
| Therefore:                                                                                                                                                 |                   |
| $F_{\rm w,Ed} = 453,3 \text{ N/mm}^2 < F_{\rm w,Rd} = 785,2 \text{ N/mm}^2 \text{ OK}$                                                                     |                   |
| The minimum throat thickness $a_{\min} = 3$ mm is acceptable.                                                                                              |                   |
| To prevent corrosion, the diagonal may be welded all around in one pass $(a = 3 \text{ mm})$ .                                                             |                   |
| To account for eccentricity a 5 mm (2 passes) throat fillet weld is recommended on the unconnected leg side, as shown in Figure A.4.                       |                   |
| Figure A.4 Throat thickness of the weld fillets                                                                                                            |                   |