| Report No. | SL/HED/R/S2298/2/93/C | |----------------|-----------------------| | Date | 7 September 1993 | | Classification | OPEN | **BS476: Part 21 Fire Resistance Tests** Summary of Data Obtained During Tests on Flange Plated Slim Floor Beams Swinden Laboratories Moorgate Rotherham, S60 3AR Telephone: (0709) 820166 Telefax: (0709) 825337 # CONTENTS | | | | Page | |------------|--------------------|-----------------------------------|--------------| | | SUMMARY | | 1 | | | INITIAL CIRCUL | ATION | 2 | | 1. | INTRODUCTION | | 3 | | 2. | CHANGES TO ST | ANDARDS | 4 | | 2.1 | BS4360:1986 'Weld | able Structural Steels' | 4 | | 2.2 | BS476:Parts 20/21: | 1987 | 4 | | 3. | fire tests on s | SIMPLY SUPPORTED SLIM FLOOR BEAMS | 4 | | 3.1 | Features Common | to all Test Assemblies | 4 | | 3.2 | Loaded Test Asser | nblies | 6 | | 3.3 | Indicative Test As | sembly | 9 | | | REFERENCES | | 10 | | | TABLES | | 11 | | | FIGURES | | F1 | | | APPENDIX 1 | DATA SHEET NUMBERS 99-106 | A1/1 | | | APPENDIX 2 | LOAD CALCULATION SUMMARY SHEETS | A2 /1 | | | APPENDIX 3 | PC DISK VERSION OF DATA | A3 /1 | 7 September 1993 OPEN # **SUMMARY** # **BS476:PART 21 FIRE RESISTANCE TESTS** SUMMARY OF DATA OBTAINED DURING TESTS ON FLANGE PLATED SLIM FLOOR BEAMS ## D. E. Wainman During the four years 1989-1992 the Sections Commercial Division of British Steel has sponsored more than thirty standard fire resistance tests on hot rolled structural steel sections. The range of systems / component configurations investigated in these tests has been much wider than in preceding years. Data arising from the tests are being summarised in a series of reports, each one dealing with either a different form of construction or generic group of test assemblies. This is the first report issued as part of that series. It contains detailed descriptions of the design, instrumentation and construction for each of eight flange plated slim floor beams, together with the data arising from them. #### **KEYWORDS** 26 +BS 476 Fire Resistance Lab Reports Fire Tests +Slimflor +BS 4360 +BS EN 10 025 Beams Columns Load (Mechanical) Sections (Structural) Building Floors British Steel Technical Swinden Laboratories, Moorgate, Rotherham S60 3AR Telephone: (0709) 820166 Telefax; (0709) 825337 Cover Pages: 1 Text Pages: 14 Figure Pages: 37 Appendix Pages: 38 ### INITIAL CIRCULATION # COMMERCIAL Commercial Office -Structural Sections Mr J. Dowling Mr J. Robinson (50 Copies) ## **British Steel Technical HQ** Dr R. Baker, Director Research & Development #### **Swinden Laboratories** Mr G. Banks Mr T. R. Kay Dr B. R. Kirby Dr D. J. Latham Dr M. J. May Mr L. N. Tomlinson Mr P. E. Wells Library The contents of this report are the exclusive property of British Steel plc and are confidential. The contents must not be disclosed to any other party without British Steel's previous written consent which (if given) is in any event conditional upon that party indemnifying British Steel against all costs, expenses and damages claims which might arise pursuant to such disclosure. Care has been taken to ensure that the contents of this report are accurate, but British Steel and its subsidiary companies do not accept responsibility for errors or for information which is found to be misleading. Suggestions for or descriptions of the end use or application of products or methods of working are for information only and British Steel and subsidiaries accept no liability in respect thereof. Before using products supplied or manufactured by British Steel or its subsidiary companies the customer should satisfy himself of their suitability. If further assistance is required, British Steel within the operational limits of its research facilities may often be able to help. COPYRIGHT AND DESIGN RIGHT - © - BRITISH STEEL, 1993 #### **BS476:PART 21 FIRE RESISTANCE TESTS** # SUMMARY OF DATA OBTAINED DURING TESTS ON FLANGE PLATED SLIM FLOOR BEAMS ## 1. INTRODUCTION In 1987 and 1988 research staff based at the Swinden Laboratories of British Steel Technical prepared and published two Compendia^(1,2) in which data obtained from standard fire resistance tests were summarised. These documents covered all the British Steel sponsored fire tests which had been carried out in the UK since 1979 according to the requirements of either BS476:Part 8:1972, or the later revision, BS476:Parts 20/21:1987. Only tests on hot rolled structural steel sections in which the test members were completely unprotected, or were partially protected by materials used only in the fabric of the structure, such as concrete, brick and blockwork, were included. Taking the two documents together, details were given for a total of 62 full scale tests plus a further 31 separate indicative, i.e. unloaded, specimens. Since the publication of the second compendium a further 40 full scale fire resistance tests have been carried out. The range of systems / component configurations which have been investigated in these tests has been much wider than in the preceding years and has included, for example, tests on:- - 8 flange plated slim floor beams, (of which 7 were loaded and one was a full length indicative). - 4 shelf angle floor beams, (of various types). - 5 composite metal deck floors, (of various types). - 6 pairs of beam / beam and beam / column connection assemblies. - 4 composite columns with concrete infill between the flanges. - 1 column with blockwork infill between the flanges. Plus, amongst others, three tests on concrete filled circular hollow sections, two lattice girders formed from square hollow sections, an arched metal deck floor and two fully protected beams. Brief details of all these tests can be found in a recent Technical Note⁽³⁾. Tests have also been carried out on a number of indicative specimens. These were usually small assemblies which were included in the furnace alongside a full length member, though in some cases they were themselves full scale assemblies. Much of the data generated from the individual test programmes have already been used extensively by co-workers in other organisations, and in particular by the Steel Construction Institute, (SCI), for the preparation of Design Guides covering various forms of construction^(4,5,6). There is, however, a need to document the test configurations and data in more detail than is usually given in such publications. Having regard to the variety and complexity of the systems examined during the last four years it has been deemed impractical to attempt to present the data for all of them in one document at the present time. It has therefore been proposed that a series of reports should be prepared, each one dealing with either a different form of construction or generic group of test assemblies, and that these will eventually be combined to form a third compendium. This is the first report issued as part of that series. It contains detailed descriptions of the design, instrumentation and construction for each of the eight flange plated slim floor beams, together with the data arising from them which are included in an Appendix. The data are presented in a format which is generally consistent with that introduced in the previous compendia. No analyses of the data are included since these are currently being incorporated into other publications dealing with design aspects of this form of construction. The numerical sequence of the data sheets has been maintained, those in this document being numbered from 99 to 106 inclusive. As in the previous compendia, the thermal data are reduced to a summary at various time increments. It should be noted, however, that in the Autumn of 1990 an improved data logging system was commissioned. Its introduction has provided a facility whereby all the thermal data, usually recorded at one minute intervals, can be made available on PC disks. These may be obtained, on request, from British Steel Technical, Swinden Laboratories. As before, the fire tests reported here form part of an ongoing research programme concerned with the evaluation and prediction of the performance of constructional steelwork in fire. Readers are therefore reminded to exercise caution when using any single test result and not to take it out of context with data for other tests of a similar nature. #### 2. CHANGES TO STANDARDS The following changes to British Standards have occurred since the publication of the previous compendia. # 2.1 BS4360:1986 'Weldable Structural Steels' This standard was withdrawn with effect from March 30th 1990. The parts of BS4360 pertaining to hot rolled sections and plates were replaced from that date by EN10025 'Hot Rolled Products of Non-Alloy Structural Steels - Technical Delivery Conditions'. BS EN10025:1990 is the English language version of that standard. The specification requirements for those products and grades not within the scope of EN10025 have been simultaneously republished unchanged as BS4360:1990 As far as the present work is concerned it should be noted that, since all the tests were carried out after March 30th 1990, steel quality BS4360:Grade 43A should now be referred to as BS EN10025:1990 Grade Fe 430 A. However, this grade only appears in the UK edition of the standard under the heading 'Non Conflicting National Additions'. Similarly, steel quality BS4360:Grade 50B should now be referred to as BS EN10025:1990:Grade Fe 510 B. The requirements of the two specifications are compared in Tables 1 and 2. A detailed comparison of the two standards is given in Reference 7. # 2.2 BS476:Parts 20/21:1987 No changes have been made to this standard during the period covered by this report. However, discussions are ongoing concerning certain aspects of the standard fire test procedures. ## 3. FIRE TESTS ON SIMPLY SUPPORTED SLIM FLOOR BEAMS In this section details are given for tests performed on seven loaded and one indicative slim floor beam assemblies. All the tests were carried out in accordance with the
requirements of BS476:Parts 20/21:1987 at the Warrington Fire Research Centre, (WFRC), between September 1990 and November 1992. The major features of the tests are summarised in Table 3. Details describing fire resistance tests on simply supported floor beams were given in the two previous compendia and it is not, therefore, proposed to cover these items again in the present report. The design and preparation of the eight assemblies are described individually in the following sections. A number of features are, however, common to all of them and these are described here. # 3.1 Features Common to all Test Assemblies # 3.1.1 Steel Quality Unless specifically indicated to the contrary, all the steel members used in the construction of the test assemblies were manufactured by British Steel and were supplied to the requirements of BS EN10025:1990 Grades Fe 430 A or Fe 510 B. Details of their chemical compositions and mechanical properties are included in the appropriate Data Sheets in Appendix 1. # 3.1.2 Dimensions and Section Properties The nominal dimensions and section properties, as specified in BS4:Part 1:1980, for the steel members used in the construction of the test assemblies are included in the Data Sheets. The actual dimensions of the members are also given, together with their calculated section properties. The loads to be applied to the various assemblies were calculated on the basis of nominal dimensions and section properties for the steel members concerned. These initial calculations were subsequently repeated to take account of the actual dimensions, mechanical and physical properties of all the materials involved in the construction. Loading calculations for each of the seven assemblies are summarised in Appendix 2. #### 3.1.3 Structural Calculations In Compendium No. 1 the load calculations were based upon the generation of the required stresses in the members using the design rules given in BS449. Compendium No. 2 was published following the introduction of the new limit state design philosophy and the calculated loads were also presented in terms of BS5950. However, because it is impossible to know how a member will be used in practice, the factored loads cannot be defined and therefore the loads calculated using BS449 were presented as a proportion of the members capacity. This is referred to as the load ratio and is given by: $LR = M_f / M_c$ Where M_f = the applied moment at the fire limit state and $M_c =$ the moment capacity at 20°C. In calculating M_c , the design strength, p_y , corresponding to the minimum guaranteed yield strength for the grade of steel, is normally used. However, for the purpose of evaluating the effect of load ratio on limiting temperature, the influence of variations in the strength of the as-received material can be diminished by adopting the measured yield strength for p_y . These have been determined from samples removed from the members under test. #### 3.1.4 Fabrication All the test assemblies were formed from 5 metre long universal column sections and pieces of 15 mm thick plate. Steel quality for the two components was always the same. The sections were used as beams and the plate was attached so as to form an extension to the lower flange. The plate width was nominally 200 mm greater than that of the column flange and the two components were positioned such that equal amounts of steel protruded from both sides of the lower flange of the section. Welding was by the MMA process using 4 mm diameter basic coated, hydrogen controlled, general purpose welding rods. All welds were continuous 8 mm fillets. # 3.1.5 Instrumentation The assemblies were instrumented such that the temperatures attained by the steel section and plate could be recorded throughout the duration of the heating period. For this purpose 3 mm diameter mineral insulated 'K' type thermocouples, (Ni-Cr/Ni-Al), with insulated hot junctions and Inconel sheaths were used. These thermocouples were embedded to the mid-thickness position of the relevant steel section. Temperatures were also monitored in other parts of the assemblies, such as, for example, the concrete infill. The thermocouples used for these situations were again 'K' type but were usually formed from glass fibre covered Ni-Cr/Ni-Al conductors. Provision was made for monitoring the vertical deflections of the test assemblies at the mid-span position. These measurements were made using a displacement transducer connected to the data logging facility. The data are included in the appropriate Data Sheets in Appendix 1. # 3.1.6 Assembly The test assemblies were positioned so as to form part of the test furnace roof. They were simply supported on a steel loading frame, lined with refractory cement, so as to give a total effective span between the roller supports of 4500 mm. This frame was supported on the outer walls of the gas fired furnace so that the length of beam actually exposed to the heating conditions of the test was 4000 mm. #### 3.1.7 Failure Criteria In all cases the performance of the test assemblies was judged against the load bearing capacity criterion outlined in Section 5 of BS476:Part 21:1987. The maximum allowable deflection and the maximum allowable rate of deflection for the test assemblies, as specified by the standard, were calculated by SPAN/20 and (SPAN)²/9000 x D, respectively, where D is the measured depth of the section and plate, (non-composite construction), or the section, plate and concrete floor slab, (composite construction). The allowable rate of deflection criterion is not applicable until the deflection exceeds a value equal to SPAN/30. Since the span was fixed at 4500 mm the values of SPAN/20 and SPAN/30 were always 225 mm and 150 mm respectively. #### 3.1.8 Additional Data In some cases heating of the test assembly continued beyond the time at which 'failure' was deemed to have occurred and the load removed from the beam. This was done to enable further data to be recorded concerning the heating rates of the various members of the assembly. #### 3.2 Loaded Test Assemblies The following sections describe in greater detail aspects concerning the construction, instrumentation, and loading of seven test assemblies. ## 3.2.1 Test WFRC 50521 A non composite construction consisting of a universal column of serial size 254 x 254 mm x 107 kg/m and a steel plate 460 mm wide x 15 mm thick. Both the column and plate were Grade Fe 430 A material. The protruding sections of the bottom plate were used to support fourteen pre-cast reinforced concrete slabs which covered the entire roof area of the furnace. These were standard hollow cored 'TEMBO' slabs manufactured by Richard Lees Ltd., and were nominally 600 mm wide x 200 mm deep x 1500 mm in length, (see Fig. 1). Each slab had one solid end extending over a length of 250 mm, this end being situated adjacent to the web of the steel section. The gap between the concrete floor units and the web was filled with fine dry sand. The upper flange of the section was also covered with dry sand to a depth of approximately 25 mm to simulate the floor screed which would normally be used in site practice. The assembly is shown schematically in Fig. 2. The thermocouple positions in the steelwork were as shown in Fig. 3, (longitudinal arrangement), and Figs. 4(a) to 4(g), (transverse arrangements). A total imposed load of 388 kN was applied directly to the steel section at four points along its supported length and directly over the web. The rams were spaced at 875 mm intervals along the section length as shown in Fig. 5. Loading calculations are given in Appendix 2.1. These indicate that the load ratio for this system was 0.55. Data for this test are summarised in Data Sheet No. 99. # 3.2.2 Test WFRC 50522 A composite construction consisting of a universal column of serial size 203 x 203 mm x 86 kg/m and a steel plate 425 mm wide x 15 mm thick. Both the column and plate were Grade Fe 430 A material. Two rows of shear connectors were fixed to the top surface of the section using stud welding equipment. The connectors were nominally 19 mm diameter x 100 mm long and were located at the quarter flange width positions at 200 mm centres along the full length of the section, (see Fig. 6). A concrete floor slab which encased the whole section, but which left the lower face of the plate exposed, was cast using a nominally Grade 35 bulk supplied concrete mix. The slab contained two layers of steel reinforcement in the material above the upper flange. The first was a prefabricated 200 mm square mesh composed of 7 mm diameter rods, (Type A193). The second comprised 12 mm diameter rods, (Type T12), laid at right angles to the column and spaced at 150 mm centres. Both were located at a height of approximately 40 mm above the top surface of the upper flange. The floor slab had overall nominal dimensions of 1700 mm width x 350 mm depth and was 4500 mm in length. The assembly is shown schematically in Fig. 7. In order to ensure that the fillet weld between the section and plate was sufficiently stressed the concrete above it was weakened by cutting two 20 mm deep x 6 mm wide grooves into it. These were situated approximately 60 mm from each of the flange tips and ran the full length of the concrete slab. The thermocouple positions in the steelwork were as shown in Fig. 3, (longitudinal arrangement), and Figs. 4(a) to 4(g), (transverse arrangements). An additional ten thermocouples were used to monitor the temperatures in the head and at the mid-height of three of the shear connectors, (see Fig. 6), and at two positions close to the mid span of the section in each type of steel reinforcement. Fourteen thermocouples were also embedded in the concrete slab at the mid-span position during casting. The positions of these thermocouples are shown in Fig. 8. The data recorded by all the additional thermocouples are shown separately in Data Sheet No. 100C. A total imposed load of 450 kN was applied
to the system at eight positions on the concrete floor slab. The rams were spaced at 530 mm intervals along the section length and were positioned on either side of it at a distance of 700 mm from the centre line, (see Figs. 7 and 9). It was necessary to concentrate the load around the mid-span of the section in order to achieve the intended load ratio of 0.56. Loading calculations are given in Appendix 2.2 and these indicate that the actual load ratio achieved was 0.58. Data for this test are summarised in Data Sheet No. 100. ## 3.2.3 Test WFRC 52896 A non composite construction consisting of a universal column of serial size $203 \times 203 \text{ mm} \times 60 \text{ kg/m}$ and a steel plate 405 mm wide x 15 mm thick. Both the column and plate were Grade Fe 430 A material. Web stiffeners formed from 15 mm thick plate, (also Grade Fe 430 A), were welded on both sides of the section at the mid-span and roller support positions, (see Fig. 10). The protruding sections of the bottom plate were used to support simulated concrete floor slabs made up from pre-cast dense concrete blocks each 440 mm long x 140 mm wide x 215 mm deep. The space remaining between these blocks and the web of the section was filled with fine dry sand up to half the depth of the web. The assembly is shown schematically in Fig. 11. The thermocouple positions in the steelwork were as shown in Fig. 3, (longitudinal arrangement), and Figs. 4(a) to 4(g), (transverse arrangements). One additional thermocouple was placed in the sand infill at the mid-depth, mid-width position at the centre of the supported span. The load was applied to both the steel section and the concrete blockwork. A total imposed load of 123.88 kN was applied directly to the steel section at two points situated 970 mm either side of the mid-span position and directly over the web. In addition a total imposed load of 44.88 kN was applied to the blockwork at four positions on each side of the section. Details of the loading arrangement are shown in Figs. 11 and 12. Loading calculations are given in Appendix 2.3 and indicate that the load ratio for this system was 0.516. Data for this test are summarised in Data Sheet No. 101. #### 3.2.4 Test WFRC 52897 A non composite construction consisting of a universal column of serial size 254 x 254 mm x 73 kg/m and a steel plate 455 mm wide x 15 mm thick. Both the column and plate were Grade Fe 430 A material. The web of the section was totally encased in nominally Grade 30 concrete. The protruding sections of the bottom plate were used to support simulated concrete floor slabs made up from pre-cast dense concrete blocks each 440 mm long x 140 mm wide x 215 mm deep. The assembly is shown schematically in Fig. 13. The thermocouple positions in the steelwork were as shown in Fig. 3, (longitudinal arrangement), and Figs. 4(a) to 4(g), (transverse arrangements). The load was applied to both the steel section and the concrete blockwork. A total imposed load of 173.6 kN was applied directly to the steel section at two points situated 1000 mm either side of the mid-span position and directly over the web. In addition a total imposed load of 70.4 kN was applied to the blockwork at four positions on each side of the section. Details of the loading arrangements are shown in Figs. 13 and 14. The loading calculations, as given in Appendix 2.4, indicate that the load ratio for this system was 0.457. Data for this test are summarised in Data Sheet No. 102. #### 3.2.5 Test WFRC 51883 A non composite construction consisting of a universal column of serial size $305 \times 305 \text{ mm} \times 283 \text{ kg/m}$ and a steel plate 525 mm wide x 15 mm thick. Both the column and plate were Grade Fe 430 A material. Grade 30 concrete was cast between the flanges of the section up to half the web depth. The protruding sections of the bottom plate were used to support simulated concrete floor slabs made up from pre-cast dense concrete blocks, each 440 mm long x 140 mm wide x 215 mm deep. The assembly is shown schematically in Fig. 15. The thermocouple positions in the steelwork were as shown in Fig. 16, (longitudinal arrangement), and Figs. 17(a) to 17(i), (transverse arrangements). The overall arrangement was very similar to that used on the previous four tests but included additional locations in the bottom plate, web and fillet weld, plus two locations in the air space, (cavity), between the in-situ concrete and the underside of the top flange. The thermocouple locations in the web of the section are shown in greater detail in Fig. 18. An additional eighteen thermocouples were embedded in the concrete at the time of casting, the positions of which are shown in Fig. 19. The data recorded by these thermocouples are shown separately in Data Sheet No. 103C. The load was applied to both the steel section and the blockwork. A total imposed load of 170.2 kN was applied directly to the steel section at two points situated 970 mm either side of the mid-span position and directly over the web. In addition a total imposed load of 221 kN was applied to the blockwork at four positions on both sides of the section. Details of the loading arrangements are shown in Fig. 20. Loading calculations given in Appendix 2.5 indicate that the load ratio for this system was 0.188. Data for this test are summarised in Data Sheet No. 103. # 3.2.6 Test No. WFRC 54278 A non composite construction consisting of a universal column of serial size 152 x 152 mm x 30 kg/m and a steel plate 355 mm wide x 15 mm thick. Both the column and plate were Grade Fe 510 B material. Grade 30 concrete was cast between the flanges of the section up to half the web depth. The protruding sections of the bottom plate were used to support simulated concrete floor slabs made up from pre-cast dense concrete blocks each 440 mm long x 140 mm wide x 215 mm deep. The assembly is shown schematically in Fig. 21. The thermocouple positions in the steelwork were as shown in Fig. 16, (longitudinal arrangement), and Figs. 17(a) to 17(i), (transverse arrangements). The thermocouple locations in the web of the section are shown in greater detail in Fig. 22. An additional eighteen thermocouples were embedded in the concrete at the time of casting, the positions of which are shown in Fig. 19. The data recorded by these thermocouples are shown separately in Data Sheet No. 104C. The load was applied to both the steel section and the blockwork. A total imposed load of 37.4 kN was applied directly to the steel section at two points situated 970 mm either side of the mid-span position and directly over the web. In addition a total imposed load of 39.6 kN was applied to the blockwork at four positions on both sides of the section. Details of the loading arrangements are shown in Figs. 23 and 24. The loading calculations, given in Appendix 2.6, indicate that the load ratio for this system was 0.434. Data for this test are summarised in Data Sheet No. 104. #### 3.2.7 Test No. WFRC 56867 The test assembly consisted of a universal column of serial size 254 x 254 mm x 73 kg/m and a steel plate 460 mm wide x 15 mm thick. Both the column and plate were Grade Fe 430 A material. The protruding sections of the bottom plate were used to support a galvanised sheet steel profile referred to as '210 closure flashing', the form of which is illustrated in Fig. 25. This in turn supported a 210 mm deep metal deck floor profile produced by Precision Metal Forming Ltd., (PMF), on top of which was cast a nominally 1 metre wide x 90 mm thick concrete slab incorporating A142 reinforcing mesh. A special feature of the assembly was the inclusion of four 160 mm diameter ducts passing through the web of the section. Details of the assembly are shown schematically in Figs. 26 to 28, the latter of which is reproduced with the permission of PMF. The assembly was designed and loaded on the basis that there would be no composite action between the steel and concrete components. It was appreciated however, that in practise a significant, (but uncertain), degree of longitudinal shear transfer, (section to slab), would occur. The five principal thermocouple positions in the steelwork were as shown in Fig. 29, (longitudinal arrangement), and Figs. 30(a) to 30(d), (transverse arrangements). A further twelve thermocouples were located in the web and lower flange of the section, in the region between the two central service ducts. Thermocouples were also located at the geometric centres of both of these ducts. The longitudinal disposition of all the additional thermocouples is shown in Fig. 31 and transverse sections are shown in Figs. 32(a) to 32(d). Seven thermocouples were embedded in the concrete infill at the mid-span position during casting. Their positions are shown in Fig. 33. The data recorded by these thermocouples are shown separately in Data Sheet No. 105D. A total imposed load of 300 kN was applied directly to the steel section at four points along its supported length and directly over the web. The rams were spaced at 1125 mm intervals along the section length as shown in Fig. 34. The loading calculations, given in Appendix 2.7, indicate that the load ratio for this system was 0.52. Data for this test are summarised in Data Sheet No. 105. # 3.3 Indicative Test Assembly Data were obtained for one full length indicative slim floor beam, (Test No. WFRC 51884). In terms of construction the test assembly was identical in all respects to Test No. WFRC 54278, details of which have already been given in Section 3.2.6. It was initially loaded in the manner described for that test but difficulties arose during the course of the test which rendered the fire rating outcome questionable. The thermal data which were recorded are, however, perfectly valid and these, together with other relevant test data, are summarised in Data Sheet No. 106. D. E. Wainman Investigator D. M. Martin Manager Heavy Engineering and Design Department D. J. Price Research Manager General
Steel Products The contractor will be a second La general resident de la come #### REFERENCES - 1. D. E. Wainman and B. R. Kirby: 'Compendium of UK Standard Fire Test Data Unprotected Structural Steel(1)', British Steel Technical, Contract Report, SL/RS/RSC/S10328/1/87/B. - 2. D. E. Wainman and B. R. Kirby: 'Compendium of UK Standard Fire Test Data Unprotected Structural Steel(2)', British Steel Technical, Report SL/RS/R/S1199/8/88/B. - 3. D. E. Wainman: 'Summary of all Fire Resistance Tests Carried out by British Steel plc Since December 1988', British Steel Technical, Technical Note, SL/HED/TN/2/-/92/A. - 4. G. M. Newman: 'The Fire Resistance of Partially Protected Structural Steelwork', Steel Construction Institute. Document No. SCI-RT-215, July 1992. - 5. D. L. Mullett and R. M. Lawson: 'Slim Floor Construction Using Deep Decking Interim Design Guidance', Steel Construction Institute. Technical Report No. 120, 1992. - 6. D. L. Mullett: 'Slim Floor Design and Construction', Steel Construction Institute. Publication No. 110, 1992. - 7. 'BS EN10025 v BS4360:1986, Comparisons and Comments'. Technical Information Brochure Published by British Steel, General Steels, 1990. L.W. COMPARISON BETWEEN BS4360:1986 AND BS EN10025:1990 SPECIFICATIONS FOR THE STEEL GRADES USED IN THE FIRE RESISTANCE TESTS (CHEMICAL ANALYSES) TABLE 1 | | C
% max. | Si
% max. | Mn
% max. | P
% max. | S
% max. | Nb
% max. | V
% max. | N
% max. | |--|---------------|---------------------|--------------|-------------|-------------|--------------|-------------|-------------| | BS4360:1986:Grade 43A
Ladle Analysis
Product Analysis | 0.25 | 0.50 | 1.60 | 0.050 | 0.050 | | , , | , , | | BS EN 10025:1990: Grade Fe 430 A
Ladle Analysis
Product Analysis | 0.25
NOT (| 25 0.50
OT GIVEN | 1.60 | 0.050 | 0.050 | - | , | , | | BS4360:1986:Grade 50B
Ladle Analysis
Product Analysis | 0.20 | 0.50 | 1.50 | 0.050 | 0.050 | 0.10 | 0.10 | • | | BS EN10025:1990:Grade Fe 510 B
Ladle Analysis
Product Analysis | 0.24 | 0.55 | 1.60 | 0.045 | 0.045 | | | 0.009 | TABLE 2 COMPARISON BETWEEN BS4360:1986 AND BS EN10025:1990 SPECIFICATIONS FOR THE STEEL GRADES USED IN THE FIRE RESISTANCE TESTS (MECHANICAL PROPERTIES) | | | | . 42 | | | |-----------------------------------|--|--|--|---|--| | | Thickness
Range
mm | Minimum Yield
Strength
N/mm ² | Tensile
Strength
N/mm ² | Minimum
% Elongation
Lo = 5.65√So | | | BS4360:1986
Grade 43A | ≤16 >16 ≤40 >40 ≤63 >63 ≤100 | 275
265
255
245 | 430/580 | } 22 | | | BS EN10025:1990
Grade Fe 430 A | ≤3 >3 ≤16 >16 ≤40 >40 ≤63 >63 ≤80 >80 ≤100 | <pre> 275 265 255 245 235</pre> | 430/580 | } 22 | | | BS4360:1986
Grade 50B | ≤16 >16 ≤40 >40 ≤63 >63 ≤100 | 355
345
340
325 | 490/640 | 20 | | | BS EN10025:1990
Grade Fe 510 B | ≤3 >3 ≤16 >16 ≤40 >40 ≤63 >63 ≤80 >80 ≤100 | } 355 345 335 325 315 | 510/680 | } 22 21 20 | | TABLE 3 SUMMARY OF THE MAJOR FEATURES OF THE SLIM FLOOR TEST BEAMS | Data
Sheet
Number | 66 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | |--|---|--|--|--|--|--|--|---| | Comments | Dry Sand Infill between Slabs and Web.
Dry Sand Cover to Top Flange.
Load Applied to Steel Beam Only. | 2 Rows of Shear Connectors Welded to Top Flange.
Load Applied to Concrete Floor.
Composite Construction. | Web Stiffeners at Mid-Span and Roller Supports.
In-Filled with Dry Sand to ½ Height of Web.
Load Applied to both Steel Beam and Blockwork. | Concrete Infill between Flanges.
Load Applied to both Steel Beam and Blockwork. | Concrete between Flanges to \(\frac{1}{2} \) Height of Web.
Load Applied to both Steel Beam and Blockwork. | Concrete between Flanges to ‡ Height of Web.
Load Applied to both Steel Beam and Blockwork. | Service Ducts Passing Through Web.
Load Applied to Steel Beam Only. | Construction as for WFRC 54278. | | Nominal
Load
Ratio | 0.55 | 0.58 | 0.516 | 0.457 | 0.188 | 0.434 | 0.52 | FULL
LENGTH
INDICATIVE | | Load
Bearing
Capacity
mins | 60 | 67 | 83 | 83 | 96 | 72 | 62 | LEN | | Floor Slab
Details | 7 Tembo Slabs Per Side
1500(L) x 600(W) x 200(D) | Beam Encased in Cast Concrete Slab
1700(W) x 350(D) | Precast Concrete Blocks
440(L) x 140(W) x 215(D) | Precast Concrete Blocks
440(L) x 140(W) x 215(D) | Fe 430 A Precast Concrete Blocks
440(L) x 140(W) x 215(D) | Fe 510 B Precast Concrete Blocks
440(L) x 140(W) x 215(D) | Fe 430 A PMF 210 Metal Deck Plus 90 mm
Concrete Cover | Precast Concrete Blocks
440(L) x 140(W) x 215(D) | | Steel
Grade | Fe 430 A | Fe 510 B | Fe 430 A | Fe 510 B | | Nominal Section
and Plate
Dimensions
mm x mm x kg/m | 254 x 254 x 107
460 x 15 | 203 x 203 x 86
425 x 15 | 203 x 203 x 60
405 x 15 | 254 x 254 x 73
455 x 15 | 305 x 305 x 283
525 x 15 | 152 x 152 x 30
355 x 15 | 254 x 254 x 73
460 x 15 | 152 x 152 x 30
355 x 15 | | WFRC
Test
Number | 12909 | 20909 | 52896 | 52897 | 51883 | 54278 | 29892 | 51884 | | Test
Date | 25.09.90 | 14.11.90 | 08.02.91 | 14.02.91 | 07.08.91 | 31.10.91 | 04.11.92 | 31.07.91 | (R4/22) NOMINAL PRINCIPAL DIMENSIONS OF RICHARD LEES 'TEMBO' REINFORCED CONCRETE FLOOR SLAB TEST NO. WFRC 50521 THERMOCOUPLE POSITIONS IN THE STEELWORK - LONGITUDINAL ARRANGEMENT APPLICABLE TO TESTS WFRC 50521, 50522, 52896 AND 52897 FIG. 3 FIG. 4 THERMOCOUPLE POSITIONS IN THE STEELWORK (R4/25) - TRANSVERSE ARRANGEMENTS AT POSITIONS 1-7 VIEWED IN DIRECTION OF ARROW X IN FIG. 3 APPLICABLE TO TESTS WFRC 50521, 50522, 52896 AND 52897 FIG. 4 THERMOCOUPLE POSITIONS IN THE STEELWORK - TRANSVERSE ARRANGEMENTS AT POSITIONS 1-7 VIEWED IN DIRECTION OF ARROW X IN FIG. 3 APPLICABLE TO TESTS WFRC 50521, 50522, 52896 AND 52897 APPLIED LOAD POSITIONS - LONGITUDINAL ARRANGEMENT - TEST NO. WFRC 50521 FIG. 5 F7 FIG. 8 THERMOCOUPLE POSITIONS IN THE CONCRETE - TRANSVERSE ARRANGEMENT AT THE MID-SPAN POSITION - TEST NO. WFRC 50522 (BASED ON NOMINAL DIMENSIONS, mm) (R4/31) APPLIED LOAD POSITIONS - TEST NO. WFRC 50522 (LONGITUDINAL ARRANGEMENT) FIG. 9 (R4/32)DETAILS OF THE WEB STIFFENERS - TEST NO. WFRC 52896 (BASED ON ACTUAL DIMENSIONS, mm) FIG. 10 2 mm Clearance Between all Steel Component Faces F11 F12 APPLIED LOAD POSITIONS - LONGITUDINAL ARRANGEMENT - TEST NO. WFRC 52896 FIG. 12 (R4/36)APPLIED LOAD POSITIONS - LONGITUDINAL ARRANGEMENT - TEST NO. WFRC 52897 F17 FIG. 17 (Contd...) THERMOCOUPLE POSITIONS IN THE STEELWORK - TRANSVERSE ARRANGEMENTS AT POSITIONS 1-9 VIEWED IN DIRECTION OF ARROW X IN FIG. 16 APPLICABLE TO TESTS WFRC 51883, 51884 AND 54278 THERMOCOUPLE POSITIONS IN THE STEELWORK FIG. 17 (Contd...) (R4/40) - TRANSVERSE ARRANGEMENTS AT POSITIONS 1-9 VIEWED IN DIRECTION OF ARROW X IN FIG. 16 APPLICABLE TO TESTS WFRC 51883, 51884 AND 54278 (R4/41) FIG. 17 THERMOCOUPLE POSITIONS IN THE STEELWORK - TRANSVERSE ARRANGEMENTS AT POSITIONS 1-9 VIEWED IN DIRECTION OF ARROW X IN FIG. 16 APPLICABLE TO TESTS WFRC 51883, 51884 AND 54278 FIG. 18 DIMENSIONAL DETAILS FOR WEB THERMOCOUPLE POSITIONS - TEST NO. WFRC 51888 (BASED ON NOMINAL DIMENSIONS) F22 FIG. 20 APPLIED LOAD POSITIONS - TEST NO. WFRC 51883 (R4/44) SCHEMATIC ARRANGEMENT OF COMPONENTS - TRANSVERSE SECTION - TEST NO. WFRC 54278 (BASED ON NOMINAL DIMENSIONS, mm) FIG. 21 FIG. 22 DIMENSIONAL DETAILS FOR WEB THERMOCOUPLE POSITIONS - TEST NO. WFRC 54278 (BASED ON NOMINAL DIMENSIONS, mm) APPLIED LOAD POSITIONS - LONGITUDINAL ARRANGEMENT - TEST NO. WFRC 54278 FIG. 23 FIG. 24 APPLIED LOAD POSITIONS - TRANSVERSE ARRANGEMENT - TEST NO. WFRC 54278 (R4/48) FIG. 25 DIMENSIONAL DETAILS OF PMF 210 mm DEEP CLOSURE FLASHING - TEST NO. WFRC 56867 _ - (R4/50) SCHEMATIC ARRANGEMENT OF COMPONENTS - LONGITUDINAL ARRANGEMENT TEST NO. WFRC 56867 FIG. 26 (R4/51)SCHEMATIC ARRANGEMENT OF COMPONENTS - TRANSVERSE SECTION AT A-A IN FIG. 26 TEST NO. WFRC 56867 FIG. 27 F32 FIG. 30 THERMOCOUPLE POSITIONS IN THE STEELWORK - TRANSVERSE ARRANGEMENTS AT POSITIONS 1-5 VIEWED IN DIRECTION OF ARROW X IN FIG. 29 TEST NO. WFRC 56867 F34 FIG. 32 THERMOCOUPLE POSITIONS IN THE STEELWORK - TRANSVERSE ARRANGEMENTS AT POSITIONS IN THE CENTRAL 600 mm OF THE BEAM VIEWED IN DIRECTION OF ARROW X IN FIG. 31 - TEST NO. WFRC 56867 (R4/55) F36 (R4/57) APPLIED LOAD POSITIONS - LONGITUDINAL ARRANGEMENT - TEST NO. WFRC 56867 FIG. 34 ## APPENDIX 1 DATA SHEET NUMBERS 99-106 DATA SHEET NUMBER 99A ## **SLIM FLOOR BEAM** ### DIMENSIONS AND PROPERTIES | Section | Dimensions | Depth | Width | Mass | Thic | kness | Elastic | Modulus | Plastic | Modulus | Moment | of Inertia | |-------------------------------|---------------------------|---------------------|---------------------|--------------------|--------------|--------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------| | Serial Size
and Type
mm |
and
Properties | of
Section
mm | of
Section
mm | Per
Metre
kg | Web
mm | Flange
mm | Axis
x-x
cm ³ | Axis
y-y
cm ³ | Axis
x-x
cm ³ | Axis
y-y
cm ³ | Axis
x-x
cm ⁴ | Axis
y-y
cm4 | | 254 x 254
Column | Nominal
Actual | 266.7
268 | 258.3
258 | 107
107.3 | 13.0
13.0 | 20.5
20.5 | 1313
1319 | 456.9
455.3 | 1485
1492 | 695.5
693.2 | 17510
17673 | 5901
5873 | | 460 x 15
Plate | Nominal
Actual | 15.0
15.0 | 460
460 | 54.2
54.2 | | | | | | | | | | UC & Plate
Combined | Nominal (a)
Actual (a) | | | 161.9
162.0 | | | 1473
1481 | 790.1
789.2 | 1830
1839 | 1497
1495 | 26651
26912 | 18172
18151 | ### CHEMICAL COMPOSITION (PRODUCT ANALYSIS - Wt. %) | Product | Steel Quality | С | Si | Mn | P | s | Cr | Mo | Ni | v | Cu | Nb | Al | N | |---------|---------------|------|------|------|-------|-------|-------|--------|------|--------|----|--------|--------|--------| | Column | Fe 430 A | 0.16 | 0.29 | 0.73 | 0.021 | 0.028 | 0.08 | 0.011 | 0.07 | <0.005 | | <0.005 | <0.005 | 0.0045 | | Plate | Fe 430 A | 0.19 | 0.30 | 0.80 | 0.013 | 0.012 | <0.02 | <0.005 | 0.02 | <0.005 | | <0.005 | 0.029 | 0.0048 | #### ROOM TEMPERATURE TENSILE PROPERTIES | Position | LYS | TS | Elong. | |----------|-------|-------|--------| | | N/mm² | N/mm² | % | | Column | 275 | 457 | 26.5 | | Plate | 310 | 496 | 29.0 | #### NOTES | (a) | Including th | e 8 mm | fillet w | eld. | |-----|--------------|--------|----------|------| - (b) Initial ambient temperature = 15°C. - (c) Based on an initial ambient temperature of 20°C. - (d) Heating continued with no applied load. TEST CENTRE: TEST DATE: TEST NUMBER: WARRINGTON RESEARCH 25th SEPTEMBER 1990 WFRC 50521 BS476: PARTS 20 & 21: 1987 RESULTS TIME TO L/30 TIME TO L/9000D RE-LOAD TEST LOAD BEARING CAPACITY: FIRE RESISTANCE: 60 MINUTES 58 MINUTES NOT CARRIED OUT 60 MINUTES 60 MINUTES SHEET 99B | THERMOCOUPLE | | | | | TI | EMPE | RATU | RE De | g. C A | FTER | VAR | ious | TIME | S (MIN | NUTES | S) | | | | |--|----------------------------------|----------------------------------|--|--|--|---|--|---|---|---|---|--|--|--|---|---|--|---|---| | LOCATION | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 70 | 80 | 90 | | Upper Flange | 18 | 18 | 18 | 17 | 17 | 18 | 18 | 18 | 19 | 20 | 22 | 24 | 27 | 31 | 36 | 42 | 72 | 95 | 103 | | UF/Web Junction | 17 | 18 | 17 | 17 | 17 | 17 | 18 | 19 | 20 | 22 | 24 | 28 | 33 | 39 | 46 | 54 | 91 | 103 | 116 | | Web | 10 mm from UF
30 mm from UF
50 mm from UF
Mid-Height
50 mm from LF
30 mm from LF
10 mm from LF | 18
18
17
18
18
18 | 18
18
18
19
21
24 | 18
17
17
18
23
29
37 | 18
18
18
23
42
60
80 | 18
18
19
29
54
72
90 | 19
20
22
34
66
88
113 | 20
22
24
41
82
111
141 | 22
24
27
49
101
136
174 | 23
27
31
59
122
163
209 | 25
30
36
71
145
192
244 | 29
36
45
96
183
241
306 | 34
45
56
114
224
292
371 | 41
54
71
136
262
340
428 | 49
68
90
156
297
381
477 | 58
80
100
176
330
420
522 | 67
90
106
194
359
455
563 | 99
103
108
224
409
511
622 | 111
129
152
259
449
555
668 | 130
154
178
289
487
596
711 | | LF/Web Junction | 19 | 26 | 43 | 92 | 102 | 128 | 160 | 195 | 233 | 271 | 338 | 409 | 469 | 520 | 568 | 610 | 670 | 715 | 761 | | Lower Flange | B/6 from C/L
B/4 from C/L
B/3 from C/L | 20
22
25 | 34
41
50 | 62
78
94 | 101
111
127 | 127
142
165 | 159
177
204 | 194
214
245 | 234
253
287 | 275
294
330 | 317
336
372 | 388
407
444 | 462
479
515 | 523
538
573 | 575
589
623 | 622
635
666 | 662
675
700 | 717
725
751 | 770
778
811 | 826
836
866 | | Plate | Mid-Width
B/6 from C/L
B/4 from C/L
B/3 from C/L | 97
98
123
93 | 165
165
186
155 | 234
234
244
211 | 269
277
293
275 | 362
364
371
350 | 435
433
431
413 | 495
492
487
469 | 547
543
533
519 | 588
585
573
559 | 624
622
606
597 | 669
668
645
647 | 697
699
678
683 | 729
732
717
722 | 761
766
754
759 | 778
784
777
780 | 790
799
793
800 | 840
852
849
854 | 890
901
899
908 | 928
939
936
945 | | Plate Extension | x/3 from FL. Tip
x/2 from FL. Tip
2x/3 from FL. Tip | 81
80
90 | 149
161
166 | 218
232
241 | 281
295
306 | 348
362
374 | 404
421
431 | 459
474
484 | 506
522
532 | 547
563
572 | 588
601
611 | 646
658
669 | 695
707
718 | 739
750
761 | 775
785
791 | 801
815
823 | 833
844
853 | 887
895
905 | 932
936
944 | 964
967
972 | | Fillet Weld | 38 | 79 | 129 | 180 | 227 | 281 | 327 | 371 | 411 | 449 | 515 | 575 | 628 | 674 | 710 | 740 | 802 | 860 | 908 | | Furnace Gas (b)
Standard Curve (c) | 532
502 | 603
603 | 671
663 | 690
705 | 733
739 | 755
766 | 789
789 | 810
809 | 831
826 | 852
842 | 876
865 | 900
885 | 922
902 | 940
918 | 942
932 | 965
945 | 985
968 | 1011
988 | 1034
1006 | | Deflection mm
Deflection Rate mm/min | 2
2 | 8
2 | 14
3 | 20
2 | 29
3 | 36
2 | 43
2 | 50
2 | 56
2 | 62
2 | 70
2 | 79
1 | 88
2 | 97
2 | 111
4 | 150
12 | (d) | | | DATA SHEET 100A NUMBER ## SLIM FLOOR BEAM ## DIMENSIONS AND PROPERTIES | Section | Dimensions | Depth | Width | Mass | Thic | kness | Elastic | Modulus | Plastic | Modulus | Moment | of Inertia | |-------------------------------|---------------------------|---------------------|---------------------|--------------------|--------------|--------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------| | Serial Size
and Type
mm | and
Properties | of
Section
mm | of
Section
mm | Per
Metre
kg | Web
mm | Flange
mm | Axis
x-x
cm ³ | Axis
y-y
cm ³ | Axis
x-x
cm ³ | Axis
y-y
cm ³ | Axis
x-x
cm ⁴ | Axis
y-y
cm ⁴ | | 203 x 203
Column | Nominal
Actual | 222.3
226 | 208.8
210 | 86
83.8 | 13.0
12.4 | 20.5
19.7 | 851.5
847.4 | 298.7
289.9 | 978.8
969.5 | 455.9
442.3 | 9462
9576 | 3119
3044 | | 425 x 15
Plate | Nominal
Actual | 15.0
15.0 | 425
428 | 50.0
50.4 | | | | | | | | | | UC & Plate
Combined | Nominal (a)
Actual (a) | | | 137.0
134.7 | | | 980.1
974.0 | 601.6
603.7 | 1246
1234 | 1140
1136 | 15183
15436 | 12783
12919 | ## CHEMICAL COMPOSITION (PRODUCT ANALYSIS - Wt. %) | Product | Steel Quality | C | Si | Mn | P | S | Cr | Mo | Ni | v | Cu | Nb | Al | N | |-----------------|----------------------|--------------|--------------|--------------|----------------|----------------|---------------|------------------|----|------------------|----------------|----|-----------------|------------------| | Column
Plate | Fe 430 A
Fe 430 A | 0.18
0.19 | 0.02
0.29 | 1.16
0.82 | 0.021
0.008 | 0.023
0.013 | 0.03
<0.02 | <0.005
<0.005 | | <0.005
<0.005 | <0.02
<0.02 | | <0.005
0.039 | 0.0033
0.0040 | #### ROOM TEMPERATURE TENSILE PROPERTIES | Position | LYS | TS | Elong. | |----------|-------|-------|--------| | | N/mm² | N/mm² | % | | Column | 265 | 465 | 23.0 | | Plate | 306 | 479 | 30.5 | ## NOTES | (a) | Including the 8 mm fillet weld. | |-----|--| | (b) | Initial ambient temperature = 19°C. | | (c) | Based on an initial ambient temperature of 20°C. | | (d) | Heating continued with no applied load. | TEST CENTRE: WARRINGTON RESEARCH TEST DATE: 14th NOVEMBER 1990 TEST NUMBER: WFRC 50522 BS476: PARTS 20 & 21: 1987 RESULTS TIME TO L/30 : >67,<68 MINUTES TIME TO L2/9000D : 67 MINUTES RE-LOAD TEST : NOT CARRIED OUT LOAD BEARING CAPACITY : 67 MINUTES FIRE RESISTANCE : 67 MINUTES DATA SHEET NUMBER 100B | THERMOCOUPLE | | | | | TI | EMPE | RATU | RE De | g. C A | FTER | VAR | IOUS | TIMES | S (MI | NUTES | 3) | | | | |--|--|----------------------------------|----------------------------------|----------------------------------|--|----------------------------------|--|--
---|--|--|--|--|---|---|---|---|---|---| | LOCATION | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 35 | 40 | 45 | 50 | 60 | 67 | 70 | 80 | 90 | | Upper Flange | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 31 | 48 | 73 | .80 | 85 | 89 | 94 | 99 | 99 | 102 | 104 | | UF/Web Junction | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 36 | 55 | 81 | 89 | 93 | 95 | 97 | 101 | 103 | 107 | 112 | | Web | 10 mm from UF
30 mm from UF
50 mm from UF
Mid-Height
50 mm from LF
30 mm from LF
10 mm from LF | 26
26
25
26
26
26
26
26 | 26
26
25
26
26
27 | 26
26
25
26
33
45 | 26
26
25
37
51
69 | 26
26
26
32
48
63
84 | 26
26
27
42
71
91 | 26
31
40
73
91
100
103 | 33
57
73
92
98
101
112 | 55
82
91
99
100
104
130 | 75
94
99
100
101
113
150 | 94
100
100
100
106
135
195 | 98
100
100
103
143
192
257 | 99
100
100
108
175
234
318 | 100
100
100
130
211
276
366 | 104
122
135
185
270
345
448 | 113
136
152
211
302
384
493 | 115
137
157
219
312
396
506 | 121
148
173
246
350
441
554 | 129
160
189
270
383
479
595 | | LF/Web Junction | 26 | 30 | 52 | 78 | 93 | 103 | 112 | 124 | 143 | 168 | 215 | 302 | 365 | 419 | 507 | 554 | 567 | 617 | 659 | | Lower Flange | B/6 from C/L
B/4 from C/L
B/3 from C/L | 26
26
26 | 38
40
48 | 67
70
82 | 92
95
103 | 105
116
125 | 122
146
151 | 140
175
172 | 166
202
208 | 195
230
244 | 223
260
279 | 287
312
337 | 351
382
399 | 417
443
456 | 474
495
509 | 564
578
597 | 612
624
644 | 624
635
655 | 676
686
705 | 716
729
750 | | Plate | Mid-Width
B/6 from C/L
B/4 from C/L
B/3 from C/L | 59
65
56
50 | 103
116
100
83 | 143
151
143
116 | 186
202
201
173 | 268
279
273
239 | 332
339
330
292 | 392
399
387
346 | 449
453
437
397 | 496
499
478
443 | 532
534
509
480 | 576
579
551
531 | 605
611
582
570 | 629
639
615
606 | 661
673
653
644 | 729
741
725
720 | 757
769
757
751 | 773
784
772
767 | 820
832
818
815 | 862
873
861
861 | | Plate Extension | x/3 from FL. Tip
x/2 from FL. Tip
2x/3 from FL. Tip | 55
61
72 | 95
107
120 | 138
156
166 | 186
207
217 | 236
263
271 | 283
315
316 | 336
372
373 | 389
425
428 | 438
470
478 | 483
511
523 | 550
570
588 | 604
619
641 | 651
665
686 | 693
707
727 | 753
760
783 | 794
799
822 | 810
815
837 | 858
859
879 | 896
900
914 | | Fillet Weld | 39 | 70 | 106 | 150 | 200 | 249 | 300 | 351 | 397 | 438 | 497 | 545 | 591 | 634 | 706 | 739 | <i>75</i> 5 | 803 | 850 | | Furnace Gas (b)
Standard Curve (c) | 528
502 | 596
603 | 641
663 | 690
705 | 714
739 | 726
766 | 767
789 | 774
809 | 794
826 | 809
842 | 832
865 | 851
885 | 872
902 | 892
918 | 921
945 | 938
962 | 944
968 | 964
988 | 992
1006 | | Deflection mm
Deflection Rate mm/min | 2 | 6 2 | 10
2 | 15
2 | 21
2 | 27
2 | 33
2 | 40
2 | 46
2 | 51
2 | 5 9
2 | 66
2 | 74
2 | 82
2 | 100
2 | 128
9 | | | | TEST CENTRE: WARRINGTON RESEARCH TEST DATE: 14th NOVEMBER 1990 TEST NUMBER: WFRC 50522 SHEET 100C | THERMOCOUPLE | | | | | TEM | (PER | ATUR | E De | g. C A | FTE | R VAI | RIOU | S TIM | ES (I | UNIN | TES) | | | | |--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|---|--|--|---| | LOCATION | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 35 | 40 | 45 | 50 | 60 | 67 | 70 | 80 | 90 | | Shear Connectors | 1 Top
2 Top
3 Top | 27
27
25 27
27
26 | 27
27
31 | 31
27
34 | 34
31
38 | 41
39
44 | 46
44
48 | 49
44
49 | 56
48
54 | 61
60
61 | | Mean | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 27 | 28 | 31 | 34 | 41 | 46 | 47 | 53 | 61 | | 1 Mid-Height
2 Mid-Height
3 Mid-Height | 27
27
25 27
27
30 | 27
27
46 | 44
27
56 | 51
35
61 | 56
42
64 | 61
48
67 | 66
56
71 | 70
60
74 | 73
62
74 | 78
69
80 | 83
75
88 | | Mean | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 28 | 33 | 42 | 49 | 54 | 59 | 64 | 68 | 70 | 76 | 82 | | Reinforcement | T12 Bar 1 2 | 27
27 28
27 | 33
27 | 42
34 | 48
49 | 51
51 | 58
56 | 65
61 | | Mean | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 28 | 30 | 38 | 49 | 51 | 57 | 63 | | A193 Mesh 1
2 | 27
27 31
27 | 40
39 | 46
61 | 49
58 | 57
59 | 63
63 | | Mean | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 29 | 40 | 54 | 54 | 58 | 63 | | Concrete at Mid-Span | C/C 1 C/C 2 C/C 3 C/C 4 C/C 5 C/C 6 C/C 7 C/C 8 C/C 9 C/C 10 C/C 11 C/C 12 C/C 13 C/C 14 | 27
27
26
27
26
26
25
27
27
25
26
27
27 | 27
27
27
26
27
26
25
27
27
25
26
27
27 | 27
27
26
27
26
25
27
27
25
27
27 | 27
27
27
26
27
26
25
27
25
26
27
27 | 27
27
27
26
27
26
25
27
27
27
26
27
27 | 27
27
27
26
27
26
25
27
27
35
30
29
27 | 27
27
27
26
27
26
26
25
27
27
45
37
34 | 27
27
27
26
27
26
25
27
27
53
45
41
32 | 27
27
35
35
27
26
34
27
27
27
61
52
47
39 | 27
27
52
49
27
26
45
36
27
27
68
59
52
46 | 58
27
76
83
58
26
61
53
37
31
81
73
64 | 72
27
84
88
72
39
72
66
56
46
93
89
81
73 | 81
37
89
91
79
78
80
76
81
69
104
99
100
88 | 83
58
93
93
85
88
88
85
91
82
109
104
105
100 | 85
96
96
91
94
98
98
123
111
109 | 87
98
98
93
96
100
100
101
150
119
116
112 | 87
82
99
95
98
100
101
101
164
124
115 | 90
87
100
100
99
100
102
102
101
211
146
139
111 | 92
91
101
100
101
108
102
102
101
257
178
173
119 | DATA SHEET 101A NUMBER 101A ## SLIM FLOOR BEAM ### DIMENSIONS AND PROPERTIES | Section | Dimensions | Depth | Width | Mass | Thic | kness | Elastic | Modulus | Plastic | Modulus | Moment | of Inertia | |-------------------------------|---------------------------|---------------------|---------------------|--------------------|------------|--------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------| | Serial Size
and Type
mm | and
Properties | of
Section
mm | of
Section
mm | Per
Metre
kg | Web
mm | Flange
mm | Axis
x-x
cm ³ | Axis
y-y
cm ³ | Axis
x-x
cm ³ | Axis
y-y
cm ³ | Axis
x-x
cm ⁴ | Axis
y-y
cm4 | | 203 x 203
Column | Nominal
Actual | 209.6
213 | 205.2
205 | 60
59.3 | 9.3
9.3 | 14.2
14.0 | 581.1
587.4 | 199.0
196.3 | 652.0
658.8 | 302.8
298.8 | 6088
6256 | 2041
2012 | | 405 x 15
Plate | Nominal
Actual |
15.0
15.0 | 405
406 | 47.7
47.8 | | | | | | | | | | UC & Plate
Combined | Nominal (a)
Actual (a) | | | 107.9
107.6 | | | 670.7
676.6 | 514.6
514.7 | 839.5
847.2 | 925.3
923.7 | 10391
10666 | 10421
10448 | ### CHEMICAL COMPOSITION (PRODUCT ANALYSIS - Wt. %) | Product | Steel Quality | С | Si | Mn | P | S | Cr | Mo | Ni | v | Cu | Nb | Al | N | |-----------------|----------------------|--------------|--------------|------------------------------|----------------|---|----------------|-----------------|--------------|------------------|---------------|------------------|----|------------------| | Column
Plate | Fe 430 A
Fe 430 A | 0.17
0.18 | 0.18
0.31 | 0. 69
0.7 4 | 0.019
0.016 | | <0.02
<0.02 | <0.005
0.007 | 0.04
0.02 | <0.005
<0.006 | 0.03
<0.02 | <0.005
<0.005 | | 0.0097
0.0049 | ## ROOM TEMPERATURE TENSILE PROPERTIES | Position | LYS | TS | Elong. | |----------|-------|-------|--------| | | N/mm² | N/mm² | % | | Column | 292 | 481 | 29.5 | | Plate | 299 | 474 | 32.5 | ### NOTES | (a) I | | +1-0 | mm fillet | 14 | |--------|----------|-------|-----------|-------| | (81) 1 | nciuaine | une o | mm illiet | wera. | - (b) Initial ambient temperature = 17°C. - (c) Based on an initial ambient temperature of 20°C. - (d) Loads applied to both beam and blockwork were increased after 83 min. TEST CENTRE: WARRINGTON RESEARCH TEST DATE: 8th FEBRUARY 1991 TEST NUMBER: WFRC 52896 BS476: PARTS 20 & 21: 1987 RESULTS TIME TO L/30 TIME TO L/9000D RE-LOAD TEST LOAD BEARING CAPACITY FIRE RESISTANCE NOT ATTAINED NOT ATTAINED NOT CARRIED OUT 83 MINUTES 83 MINUTES DATA SHEET 101B NUMBER | THERMOCOUPLE | | | | | . Т | EMPE | RATU | RE De | g. C | FTER | VAR | ious | TIME | S (MII | UTES | S) | | | - | |--|-------------------------------|--------------------------------------|--|--|---|---|--|---|---|--|---|---|---|---|---|---|---|---|---| | LOCATION | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 40 | 50 | 60 | 70 | 80 | 83 | 90 | 100 | 116 | | Upper Flange | 10 | 9 | 10 | 12 | 14 | 19 | 23 | 29 | 34 | 42 | 78 | 130 | 179 | 223 | 280 | 296 | 331 | 363 | 401 | | UF/Web Junction | 10 | 10 | 11 | 13 | 17 | 22 | 29 | 37 | 44 | 52 | 104 | 164 | 214 | 260 | 308 | 334 | 373 | 423 | 453 | | Web | 10 mm from UF
30 mm from UF
50 mm from UF
Mid-Height
50 mm from LF
30 mm from LF
10 mm from LF | 9
9
10
9
10
10 | 9
9
10
10
11
14
16 | 10
10
12
12
17
23
31 | 12
13
15
18
27
40
53 | 16
17
20
26
42
61
81 | 22
24
28
38
61
88
115 | 29
33
37
54
83
119
154 | 37
42
48
71
108
151
193 | 46
51
60
89
135
186
236 | 55
63
74
110
164
224
285 | 104
115
132
186
261
340
419 | 165
179
194
254
341
426
512 | 222
235
253
315
407
495
585 | 268
282
299
366
464
552
644 | 326
342
363
422
515
602
695 | 344
361
381
438
532
618
711 | 380
395
414
466
566
650
740 | 427
441
460
497
608
693
789 | 467
482
500
541
670
758
855 | | LF/Web Junction | 11 | 19 | 37 | 64 | 97 | 135 | 177 | 220 | 269 | 324 | 468 | 564 | 639 | 697 | 752 | 768 | 796 | 847 | 907 | | Lower Flange | | | | | , | | | | - | | | | | | | | | | | | B/6 from C/L
B/4 from C/L
B/3 from C/L | 12
13
14 | 23
25
27 | 44
50
53 | 75
83
84 | 112
123
125 | 155
168
169 | 202
215
216 | 248
262
263 | 301
315
315 | 360
374
372 | 511
529
522 | 610
625
623 | 685
699
694 | 745
762
760 | 807
822
820 | 822
835
832 | 844
851
849 | 895
899
898 | 947
943
947 | | Plate | | · · · | | | | | : | | | | | | | | * | | | | | | Mid-Width
B/6 from C/L
B/4 from C/L
B/3 from C/L | 55
55
61
49 | 108
106
113
96 | 171
166
174
154 | 235
229
237
216 | 305
297
303
283 | 365
357
362
342 | 416
409
413
394 | 469
462
466
449 | 518
512
519
500 | 553
549
559
542 | 659
660
671
661 | 752
753
764
754 | 812
815
833
818 | 854
860
880
869 | 889
897
913
907 | 893
901
916
912 | 915
922
933
929 | 976
980
990
986 | 1013
1015
1023
1021 | | Plate Extension | | | | | • | | | | | | | | | | | | *************************************** | | | | x/3 from FL. Tip
x/2 from FL. Tip
2x/3 from FL. Tip | 48
74
51 | 105
135
107 | 165
198
175 | 227
264
241 | 294
330
312 | 353
390
374 | 407
442
428 | 464
498
486 | 520
555
544 | 568
602
592 | 691
718
710 | 773
804
793 | 848
874
865 | 897
914
907 | 929
939
935 | 929
938
934 | 941
950
945 | 996
1005
1000 | 1026
1032
1028 | | Fillet Weld | 26 | 56 | 105 | 159 | 221 | 278 | 331 | 385 | 443 | 498 | 634 | 725 | 803 | 860 | 903 | 908 | 920 | 978 | 1013 | | Sand Infill | 9 | 13 | 18 | 21 | 27 | 32 | 38 | 41 | 48 | 60 | 104 | 147 | 226 | 283 | 447 | 463 | 502 | 556 | 596 | | Furnace Gas (b)
Standard Curve (c) | 467
502 | 621
603 | 649
663 | 708
705 | 735
739 | 748
766 | 758
789 | 796
809 | 818
826 | 834
842 | 874
885 | 926
918 | 946
945 | 969
968 | 978
988 | 973
994 | 1003
1006 | 1037
1022 | 1049
1044 | | Deflection mm
Deflection Rate mm/min | 3
1 | 8
2 | 16
3 | 24
3 | 35
4 | 45
4 | 53
2 | 63
4 | 73
3 | 82
3 | 103
2 | 115
1 | 122
0 | 125
0 | 129
1 | 129
0 | (d) | | | DATA SHEET 102A ## SLIM FLOOR BEAM ### DIMENSIONS AND PROPERTIES | Section | Dimensions | Depth | Width | Mass | Thic | kness | Elastic | Modulus | Plastic | Modulus | Moment | of Inertia | |-------------------------------|---------------------------|---------------------|---------------------|--------------------|------------|--------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------| | Serial Size
and Týpe
mm | and
Properties | of
Section
mm | of
Section
mm | Per
Metre
kg | Web
mm | Flange
mm | Axis
x-x
cm ³ | Axis
y-y
cm ³ | Axis
x-x
cm ³ | Axis
y-y
cm ³ | Axis
x-x
cm ⁴ | Axis
y-y
cm ⁴ | | 254 x 254
Column | Nominal
Actual | 254.0
245 | 254.0
254 | 73
72.3 | 8.6
8.6 | 14.2
14.2 | 894.5
857.2 | 305.0
305.5 | 988.6
947.9 | 462.4
463.1 | 11360
10501 | 3873
3880 | | 455 x 15
Plate | Nominal
Actual | 15.0
15.0 | 455
460 | 53.6
54.2 | | | | | | | | | | UC & Plate
Combined | Nominal (a)
Actual (a) | | | 127.0
127.0 | | | 1006
964.5 | 692.9
702.4 | 1225
1175 | 1248
1265 | 18533
17208 | 15762
16155 | ## CHEMICAL COMPOSITION (PRODUCT ANALYSIS - Wt. %) | Product | Steel Quality | С | Si | Mn | P | S | Cr | Mo | Ni | v | Cu | Nb | Al | N | |---------|---------------|-------|------|------|-------|-------|-------|-------|------|--------|-------|--------|-------|--------| | Column | Fe 430 A | 0.095 | 0.23 | 0.59 | 0.038 | 0.027 | 0.22 | 0.034 | 0.20 | <0.005 | 0.58 | <0.005 | 0.007 | 0.0140 | | Plate | Fe 430 A | 0.18 | 0.30 | 0.73 | 0.015 | 0.010 | <0.02 | 0.007 | 0.02 | <0.005 | <0.02 | <0.005 | 0.065 | 0.0054 | #### ROOM TEMPERATURE TENSILE PROPERTIES | Position | LYS | TS | Elong. | |----------|-------|-------|--------| | | N/mm² | N/mm² | % | | Column | 347 | 489 | 30.5 | | Plate | 302 | 475 | 35.5 | ### NOTES | | (a) | Including | the 8 | mm | fillet | weld. | |--|-----|-----------|-------|----|--------|-------| |--|-----|-----------|-------|----|--------|-------| - (b) Initial ambient temperature = 17°C. - (c) Based on an initial ambient temperature of 20°C. - (d) Load applied to beam was removed and load applied to blockwork increased after 83 min. TEST CENTRE: WARRINGTO TEST DATE: 14th FEBRUA TEST NUMBER: WFRC 52897 WARRINGTON RESEARCH 14th FEBRUARY 1991 BS476: PARTS 20 & 21: 1987 RESULTS TIME TO L/30 TIME TO L/9000D : RE-LOAD TEST LOAD BEARING CAPACITY: FIRE RESISTANCE: 79 MINUTES NOT ATTAINED NOT CARRIED OUT 83 MINUTES 83 MINUTES DATA SHEET NUMBER 102B | THERMOCOUPLE | | | | | TI | EMPE | RATU | RE De | g. C | FTER | VAR | ious | TIME | S (MIN | NUTES | 3) | | | | |--|----------------------------------|----------------------------------|--|--|--|--|--|---|------------------------------------
--|---|---|--|--|--|--|---|---|---| | LOCATION | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 40 | 50 | 60 | 70 | 79 | 83 | 90 | 100 | 110 | | Upper Flange | 18 | 18 | 18 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 27 | 37 | 46 | 51 | 54 | 59 | 66 | 73 | | UF/Web Junction | 18 | 18 | 18 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 27 | 38 | 49 | 55 | 60 | 65 | 72 | 81 | | Web | | | | - | | | | | | | | | | | | | | | | | 10 mm from UF
30 mm from UF
50 mm from UF
Mid-Height
50 mm from LF
30 mm from LF
10 mm from LF | 19
19
19
18
18
19 | 19
19
19
18
18
19 | 19
20
20
19
18
19
22 | 20
20
20
19
19
23
34 | 20
20
20
19
23
33
50 | 20
20
20
19
32
47
69 | 20
20
20
20
20
20
42
62
90 | 20
20
20
21
59
87
106 | 20
20
26
85
100
123 | 20
20
20
36
98
104
147 | 21
25
27
81
123
175
251 | 32
40
44
97
181
256
354 | 45
55
61
104
241
332
444 | 55
67
75
127
296
397
519 | 63
76
85
147
336
443
568 | 67
80
91
156
347
460
588 | 73
86
101
165
387
499
631 | 82
95
108
184
424
540
672 | 90
101
116
201
457
706 | | LF/Web Junction | 19 | 19 | 25 | 40 | 59 | 81 | 105 | 121 | 151 | 180 | 298 | 411 | 511 | 592 | 644 | 664 | 712 | 755 | 789 | | Lower Flange | | | | | | | | | | | | | | | | | | | *************************************** | | B/6 from C/L
B/4 from C/L
B/3 from C/L | 20
18
19 | 21
25
34 | -36
44
59 | 56
67
88 | 79
96
117 | 107
124
156 | 136
155
192 | 165
188
231 | 195
221
268 | 227
255
306 | 358
381
428 | 475
494
541 | 578
591
639 | 662
674
717 | 715
729
770 | 737
750
791 | 776
813
828 | 819
855
867 | 851
887
895 | | Plate | | | | | | | | | | | | | | | | | | | , | | Mid-Width
B/6 from C/L
B/4 from C/L
B/3 from C/L | 66
79
62
60 | 122
127
114
109 | 189
192
176
170 | 254
256
238
232 | 327
327
309
301 | 387
386
367
360 | 443
441
421
414 | 499
495
476
468 | 544
541
522
515 | 581
577
560
554 | 647
646
634
631 | 715
719
710
713 | 772
778
772
778 | 831
839
837
843 | 866
874
875
883 | 883
891
893
899 | 900
910
918
920 | 942
951
953
960 | 972
981
982
990 | | Plate Extension | x/3 from FL. Tip
x/2 from FL. Tip
2x/3 from FL. Tip | 97
63
74 | 147
116
131 | 211
178
199 | 269
238
263 | 334
306
336 | 386
364
394 | 437
417
448 | 487
471
503 | 532
519
550 | 570
560
591 | 666
663
690 | 753
747
770 | 830
837
853 | 892
892
911 | 921
921
935 | 934
934
947 | 954
956
965 | 983
984
992 | 1009
1008
1018 | | Fillet Weld | 37 | 76 | 126 | 180 | 241 | 295 | 345 | 396 | 442 | 484 | 588 | 682 | 763 | 837 | 879 | 895 | 922 | 957 | 98 | | Furnace Gas (b)
Standard Curve (c) | 550
502 | 552
603 | 625
663 | 675
705 | 717
739 | 730
766 | 761
789 | 786
809 | 799
826 | 813
842 | 852
885 | 909
918 | 943
945 | 967
968 | 975
986 | 985
994 | 998
1006 | 1021
1022 | 103
103 | | Deflection mm
Deflection Rate mm/min | 4 2 | 9
2 | 15
2 | 22
2 | 31
3 | 39
3 | 46
3 | 53
2 | 59
2 | 64
1 | 79
1 | 94
2 | 110
2 | 127
2 | 151
3 | 170
4 | (d) | | | DATA SHEET 103A NUMBER 103A ### SLIM FLOOR BEAM ### DIMENSIONS AND PROPERTIES | Section | Dimensions | Depth | Width | Mass | Thic | kness | Elastic | Modulus | Plastic | Modulus | Moment | of Inertia | |-------------------------------|---------------------------|---------------------|---------------------|--------------------|--------------|--------------|--------------------------------|--------------------------------|--------------------------------|--------------------|--------------------------------|--------------------| | Serial Size
and Type
mm | and
Properties | of
Section
mm | of
Section
mm | Per
Metre
kg | Web
mm | Flange
mm | Axis
x-x
cm ³ | Axis
y-y
cm ³ | Axis
x-x
cm ³ | Axis
y-y
cm³ | Axis
x-x
cm ⁴ | Axis
y-y
cm4 | | 305 x 305
Column | Nominal
Actual | 365.3
368 | 321.8
320 | 283
281.2 | 26.9
27.3 | 44.1
43.7 | 4314
4314 | 1525
1495 | 5101
5100 | 2337
2293 | 78777
79378 | 24545
23920 | | 525 x 15
Plate | Nominal
Actual | 15.0
16.95 | 525
525 | 61.8
69.9 | | | | | | | | | | UC & Plate
Combined | Nominal (a)
Actual (a) | - | | 345.2
351.6 | | | 4716
4761 | 1631
1696 | 6027
6104 | 3381
3471 | 102316
105938 | 42803
44528 | #### CHEMICAL COMPOSITION (PRODUCT ANALYSIS - Wt. %) | Product | Steel Quality | С | Si | Mn | P | S | Cr | Мо | Ni | V | Cu | Nb | Al | N | |---------------------|----------------------|--------------|--------------|--------------|----------------|---|--------------|------------------|---------------|------------------|----------------|----|----------------|------------------| | Column
Plate (b) | Fe 430 A
Fe 430 A | 0.16
0.12 | 0.28
0.33 | 1.00
0.94 | 0.023
0.014 | | 0.15
0.02 | <0.005
<0.005 | 0.02
<0.02 | <0.005
<0.005 | <0.02
<0.02 | | 0.038
0.052 | 0.0070
0.0068 | ### ROOM TEMPERATURE TENSILE PROPERTIES | Position | LYS
N/mm ² | TS
N/mm ² | Elong. | |----------|--------------------------|-------------------------|--------| | Column | 284 | 474 | 34.0 | | Plate | 279 | 439 | 35.0 | # NOTES | (a) | Including | the 8 mm | fillet weld. | |-----|--------------|--------------|--------------| | 14 | TITULIANTILE | CITE O IIIII | IIIIet werd. | - (b) Manufactured by Huta Czestochowa, Poland. - (c) Initial ambient temperature = 21°C. - (d) Based on an initial ambient temperature of 20°C. - (e) Load applied to the blockwork was removed after 90 min. Heating continued with load applied to beam only. TEST CENTRE: WARRINGTON RESEARCH TEST DATE: 7th AUGUST 1991 TEST NUMBER: WFRC 51883 BS476: PARTS 20 & 21: 1987 RESULTS TIME TO L/30 TIME TO L2/9000D : NOT ATTAINED : NOT ATTAINED DATA SHEET NUMBER 103B | | FIRE RESISTANCE | <u>:</u> | 90 MINUTES | j | |--|--|----------|-------------------------------|---| | | RE-LOAD TEST
LOAD BEARING CAPACITY
FIRE RESISTANCE | : | NOT CARRIED OUT
90 MINUTES | | | THERMOCOUPLE | | | | | TE | MPER | ATU | RE De | g. C | AFTE | R VAI | RIOUS | S TIM | ES (M | IINUT | ES) | | | | |---|----------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--| | LOCATION | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | | Upper Flange | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 30 | 38 | 49 | 59 | 66 | 72 | 80 | 86 | 94 | | UF/Web Junction | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 30 | 38 | 48 | 59 | 67 | 76 | 85 | 94 | 103 | | Web | | | | | | | | | | | | | | | | | | | | | Mid-height of exposed portion
10 mm above concrete
10 mm below concrete
Mid-distance TC11 to top | 28
28
28 | 28
28
28 | 28
28
28 | 28
28
28 | 29
29
29 | 29
29
29 | 29
29
29 | 29
29
31 | 29
33
36 | 30
37
42 | 45
64
75 | 60
85
97 | 77
110
126 | 95
134
153 | 111
157
179 | 128
180
204 | 143
201
228 | 158
221
249 | 172
239
269 | | of concrete
50 mm from LF
30 mm from LF
10 mm from LF | 28
28
28
27 | 28
28
28
27 | 28
28
28
27 | 28
28
29
33 | 29
32
38
47 | 29
40
49
60 | 34
50
61
74 | 40
58
70
85 | 45
67
82
99 | 52
79
95
114 | 94
109
131
167 | 116
171
204
246 | 156
223
263
313 | 189
267
313
370 | 220
306
358
422 | 249
345
403
475 | 277
382
445
524 | 303
415
482
563 | 326
443
512
594 | | LF/Web Junction | 27 | 27 | 33 | 44 | 64 | 83 | 96 | 115 | 135 | 156 | 225 | 306 | 381 | 445 | 504 | 564 | 617 | 660 | 689 | | Lower Flange | | | | | ***** | | | - | | | | | | | | | | | | | B/6 from C/L
B/4 from C/L
B/3 from C/L | 27
27
27 | 27
27
28 | 34
36
41 | 45
50
62 | 62
67
83 | 83
90
105 | 101
115
131 | 125
138
156 | 147
161
180 |
169
186
205 | 246
271
290 | 330
361
374 | 405
436
448 | 471
503
513 | 531
566
573 | 592
632
637 | 647
687
692 | 690
727
733 | 718
754
758 | | Plate | | | | | | | | | | | | | | | - | | | | | | Mid-Width
B/6 from C/L
B/4 from C/L
B/4 from C/L (1500 mm)
B/4 overall
B/3 from C/L | 55
53
50
54
51
48 | 106
103
95
102
98
94 | 171
171
151
167
157
154 | 231
232
192
231
208
206 | 291
290
258
294
272
263 | 334
340
326
356
338
322 | 388
385
385
407
394
369 | 450
439
436
455
444
413 | 503
490
486
503
493
458 | 545
530
527
544
534
497 | 640
619
620
642
629
592 | 687
669
669
697
680
645 | 726
718
713
735
722
694 | 759
764
749
771
757
735 | 792
803
778
812
791
766 | 819
840
806
848
823
795 | 834
846
827
864
842
816 | 888
906
885
912
895
867 | 904
922
910
916
912
893 | | Plate Extension | x/3 from FL. Tip
x/2 from FL. Tip
x/2 from FL. Tip (930 mm)
x/2 from FL. Tip (1500 mm)
x/2 overall
2x/3 from FL. Tip | 23 | 98
107
105
94
103
114 | 157
173
169
155
167
182 | 209
229
227
210
223
241 | 264
286
284
263
279
300 | 316
344
341
317
335
356 | 360
393
392
365
385
403 | 402
440
439
409
431
447 | 446
488
488
454
478
495 | 484
530
530
496
520
536 | 590
641
642
608
632
645 | 667
714
717
690
708
720 | 725
770
777
749
766
779 | 781
827
836
809
824
835 | 833
877
886
860
875
886 | 879
918
924
904
916
928 | 906
942
943
925
937
947 | 950
986
984
966
980
988 | 955
986
983
966
979
986 | | Fillet Weld | 33 | 59 | 97 | 136 | 178 | 221 | 260 | 295 | 333 | 36 7 | 465 | 543 | 608 | 666 | 720 | 773 | 817 | 866 | 886 | | Cavity | 27 | 27 | 31 | 34 | 35 | 33 | 34 | 38 | 39 | 40 | 45 | 54 | 60 | 64 | 74 | 84 | 94 | 108 | 117 | | Furnace Gas (c)
Standard Curve (d) | 465
502 | 572
603 | 664
663 | 680
705 | 727
739 | 752
7 66 | 764
789 | 797
809 | 824
826 | 839
842 | 888
885 | 923
918 | 954
945 | 984
968 | 1006
988 | 1026
1006 | 1000
1022 | 1045
1036 | 1043
1049 | | Deflection mm
Deflection Rate mm/min | 1 | 3
1 | 5 | 8 | 10
0 | 11
0 | 13
0 | 15
0 | 17
0 | 19
1 | 25
0 | 33
1 | 39
0 | 46 | 52
0 | 58
1 | (e) | | | TEST CENTRE: WARRINGTON RESEARCH TEST DATE: 7th AUGUST 1991 TEST NUMBER: WFRC 51883 SHEET NUMBER 103C | THERMOCOUPLE | | | , | | TEN | IPER. | ATUR | RE De | g. C / | AFTE | R VA | RIOU | S TIM | IES (1 | UNIN | TES) | | | | |--------------|----|----|----|----|-----|-------|------|-------|--------|------|------|------|-------|--------|------|------|-----|-----|-----| | LOCATION | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | | Concrete | CCA1 | 29 | 29 | 29 | 29 | 29 | 29 | 34 | 39 | 51 | 90 | 99 | 101 | 106 | 159 | 198 | 240 | 286 | 329 | 367 | | CCB1 | 27 | 27 | 27 | 27 | 28 | 28 | 32 | 36 | 41 | 46 | 74 | 92 | 104 | 132 | 166 | 198 | 238 | 277 | 314 | | CCA2 | 27 | 27 | 27 | 27 | 28 | 28 | 32 | 36 | 45 | 97 | 99 | 101 | 101 | 101 | 153 | 200 | 236 | 269 | 303 | | CCB2 | 27 | 27 | 27 | 27 | 28 | 28 | 30 | 33 | 38 | 43 | 61 | 80 | 101 | 104 | 133 | 165 | 188 | 212 | 240 | | CCA3 | 29 | 29 | 29 | 29 | 29 | 34 | 41 | 49 | 61 | 87 | 98 | 101 | 102 | 103 | 119 | 182 | 226 | 261 | 294 | | CCB3 | 27 | 27 | 27 | 27 | 28 | 30 | 37 | 44 | 50 | 57 | 76 | 97 | 102 | 107 | 139 | 165 | 186 | 215 | 245 | | CCA4 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 31 | 44 | 92 | 98 | 103 | 114 | 133 | 153 | 178 | 208 | 239 | | CCB4 | 27 | 27 | 27 | 27 | 28 | 28 | 28 | 28 | 28 | 30 | 49 | 66 | 80 | 99 | 110 | 122 | 138 | 154 | 176 | | CCA5 | 27 | 27 | 27 | 27 | 28 | 28 | 28 | 28 | 28 | 29 | 92 | 97 | 99 | 100 | 102 | 105 | 119 | 135 | 148 | | CCB5 | 27 | 27 | 27 | 27 | 28 | 28 | 28 | 28 | 28 | 28 | 37 | 52 | 72 | 87 | 101 | 107 | 119 | 130 | 138 | | CCA6 | 27 | 27 | 27 | 27 | 28 | 28 | 28 | 30 | 35 | 42 | 99 | 100 | 101 | 101 | 102 | 102 | 108 | 126 | 142 | | CCB6 | 27 | 27 | 27 | 27 | 28 | 28 | 28 | 28 | 30 | 35 | 52 | 67 | 82 | 91 | 99 | 106 | 111 | 119 | 131 | | CCA7 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 92 | 98 | 100 | 101 | 103 | 111 | 124 | 140 | 158 | | CCB7 | 27 | 27 | 27 | 27 | 28 | 28 | 28 | 28 | 28 | 28 | 39 | 59 | 73 | 84 | 100 | 108 | 116 | 125 | 139 | | CCA8 | 27 | 27 | 27 | 27 | 28 | 28 | 28 | 28 | 28 | 28 | 73 | 90 | 94 | 96 | 98 | 100 | 98 | 103 | 110 | | CCB8 | 27 | 27 | 27 | 27 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 38 | 53 | 70 | 80 | 92 | 101 | 104 | 109 | | CCA9 | 27 | 27 | 27 | 27 | 28 | 28 | 28 | 28 | 28 | 30 | 76 | 94 | 96 | 98 | 98 | 99 | 90 | 96 | 104 | | CCB9 | 27 | 27 | 27 | 27 | 28 | 28 | 28 | 28 | 28 | 28 | 36 | 51 | 63 | 78 | 83 | 91 | 99 | 103 | 105 | DATA SHEET 104A NUMBER 104A ## SLIM FLOOR BEAM ### DIMENSIONS AND PROPERTIES | Section | Dimensions | Depth | Width | Mass | Thic | kness | Elastic | Modulus | Plastic | Modulus | Moment | of Inertia | |-------------------------------|---------------------------|---------------------|---------------------|--------------------|------------|--------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------| | Serial Size
and Type
mm | and
Properties | of
Section
mm | of
Section
mm | Per
Metre
kg | Web | Flange
mm | Axis
x-x
cm ³ | Axis
y-y
cm ³ | Axis
x-x
cm ³ | Axis
y-y
cm ³ | Axis
x-x
cm ⁴ | Axis
y-y
cm ⁴ | | 152 x 152
Column | Nominal
Actual | 157.5
160 | 152.9
152 | 30
29.5 | 6.6
6.6 | 9.4
9.1 | 221.2
219.7 | 73.06
70.14 | 247.1
245.3 | 111.2
106.9 | 1742
1757 | 558.0
533.1 | | 355 x 15
Plate | Nominal
Actual | 15.0
15.0 | 355
358 | 41.8
42.2 | | | | | | | | | | UC & Plate
Combined | Nominal (a)
Actual (a) | | | 72.4
72.1 | | | 265.2
262.9 | 348.9
352.4 | 341.0
338.9 | 589.3
592.6 | 3422
3463 | 6193
6308 | #### CHEMICAL COMPOSITION (PRODUCT ANALYSIS - Wt. %) | Product | Steel Quality | С | Si | Mn | P | s | Cr | Mo | Ni | v | Cu | Nb | Al | N | |---------|---------------|------|------|------|-------|-------|-------|--------|------|--------|-------|-------|--------|---| | Column | Fe 510 B | 0.17 | 0.01 | 1.52 | 0.015 | 0.017 | <0.02 | <0.005 | 0.02 | <0.005 | <0.02 | 0.032 | <0.005 | | | Plate | Fe 510 B | 0.11 | 0.36 | 1.34 | 0.018 | 0.008 | 0.02 | <0.005 | 0.02 | <0.005 | <0.02 | 0.030 | 0.043 | | #### ROOM TEMPERATURE TENSILE PROPERTIES | Position | LYS | TS | Elong. | |----------|-------|-------|--------| | | N/mm² | N/mm² | % | | Column | 439 | 550 | 26.0 | | Plate | 413 | 539 | 33.5 | #### NOTES | (a) | Including | the 8 mm | i fillet we | ld. | |-----|-----------|----------|-------------|-----| - (b) Initial ambient temperature = 20°C. - (c) Based on an initial ambient temperature of 20°C. - (d) Loads applied to both beam and blockwork were increased after 69 min. - (*) Data considered to be unreliable. TEST CENTRE : TEST DATE : TEST CENTRE: WARRINGTON RESEARCH TEST DATE: 30th OCTOBER 1991 TEST NUMBER: WFRC 54278 #### BS476:PARTS 20 & 21:1987 RESULTS TIME TO L/30 : 52 MINUTES TIME TO L/9000D : NOT ATTAINED RE-LOAD TEST : NOT CARRIED OUT LOAD BEARING CAPACITY : 69 MINUTES FIRE RESISTANCE : 69 MINUTES DATA SHEET 104B NUMBER | THERMOCOUPLE | | | | | . TE | MPER | ATUF | E De | g. C A | FTE | R VAF | RIOUS | TIM | ES (M | INUT | ES) | | | | |---|----------------------------------|---------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--| | LOCATION | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 35 | 40 | 45 | 52 | 5 5 | 60 | 65 | 69 | 72 | | Upper Flange | 17 | 18 | 19 | 20 | 25 | 31 | 37 | 46 | 54 | 62 | 71 | 80 | 92 | 111 | 120 | 133 | 149 | 166 | 184 | | UF/Web Junction | 17 | 19 | 21 | 23 | 26 | 30 | 37 | 45 | 53 | 59 | 66 | 73 | 80 | 97 | 106 | 121 | 144 | 162 | 186 | | Web | Mid-Height of Exposed Portion
10 mm above concrete
10 mm below concrete
50 mm from LF
30 mm from LF
10 mm from LF | 18
18
18
18
18
21 | 18
18
19
20
26
34 | 20
22
26
28
39
57 | 25
31
38
41
61
89 | 32
41
52
56
84
120 | 41
54
69
78
108
155 | 51
70
92
99
135
194 | 64
89
110
120
165
235 | 77
106
127
142
196
276 | 88
117
143
165
224
315 | 105
139
173
203
272
377 | 122
164
203
240
317
438 |
141
188
234
279
365
499 | 166
218
270
322
414
553 | 177
229
284
338
431
573 | 195
247
306
364
460
603 | 216
264
325
387
485
630 | 234
280
342
405
505
653 | 257
294
355
418
519
665 | | LF/Web Junction | 40 | 68 | 107 | 149 | 202 | 252 | 300 | 347 | 392 | 435 | 500 | 556 | 602 | 666 | 689 | 717 | 744 | 769 | 784 | | Lower Flange | 20 | ~- | 104 | 140 | 100 | 050 | <u>~~</u> | 047 | ~~1 | 405 | F01 | ==0 | 207 | 270 | ~ | | | | | | B/6 from C/L
B/4 from C/L
B/3 from C/L | 38
39
42 | 65
69
74 | 104
113
117 | 146
161
166 | 199
215
221 | 250
268
273 | 299
319
323 | 347
369
372 | 391
415
418 | 435
458
436 | 501
520
528 | 558
578
586 | 628
636 | 670
684
697 | 691
703
718 | 720
731
749 | 748
757
776 | 776
783
801 | 791
801
818 | | Plate | Mid-Width
B/6 from C/L
B/4 from C/L
B/4 from C/L (1500 mm)
B/4 overall
B/3 from C/L | 72
57
70
55
62
57 | 120
95
118
94
106
98 | 169
142
174
144
159
146 | 219
189
229
197
213
198 | 269
247
286
249
267
254 | 322
301
342
302
322
309 | 370
351
398
352
375
361 | 417
399
448
400
424
410 | 464
445
495
445
470
456 | 505
488
538
486
512
500 | 569
553
597
539
568
565 | 621
607
642
591
617
621 | 663
650
690
632
661
666 | 726
713
744
687
715
727 | 748
735
761
708
734
747 | 773
763
788
735
761
778 | 803
791
813
759
786
806 | 829
819
839
787
813
834 | 845
836
855
803
829
849 | | Plate Extension | x/3 from FL. Tip
x/2 from FL. Tip
x/2 from FL. Tip (930 mm)
x/2 from FL. Tip (1500 mm)
x/2 overall
2x/3 from FL. Tip | 52
69
57
59
63
61 | 97
124
106
105
113
117 | 153
186
165
165
174
180 | 213
248
225
224
234
245 | 274
308
284
279
292
308 | 334
368
342
334
351
370 | 390
426
399
387
407
430 | 445
480
454
440
461
485 | 494
529
502
487
509
534 | 540
573
547
530
553
579 | 606
636
613
594
618
643 | 665
692
672
653
675
698 | 712
735
717
701
720
741 | 764
782
769
752
769
794 | 786
803
791
772
791
815 | 818
831
823
804
821
843 | 843
855
848
830
846
866 | 871
883
876
858
874
894 | 885
897
891
873
888
906 | | Fillet Weld | 31 | 56 | 92 | 130 | 172 | 219 | 267 | 315 | 361 | 405 | 475 | 537 | 587 | 647 | 668 | 700 | 726 | 751 | 767 | | Cavity | 18 | 22 | 23 | 24 | 29 | 34 | 45 | 51 | 55 | 68 | 70 | 73 | 78 | 96 | 99 | 100 | 120 | 139 | 186 | | Furnace Gas (b)
Standard Curve (c) | 449
502 | 568
603 | 623
663 | 670
705 | 696
739 | 729
766 | 762
789 | 776
809 | 793
826 | 818
842 | 836
865 | 869
885 | 892
902 | 917
924 | 927
932 | 930
945 | 952
957 | 972
966 | 971
973 | | Defection mm
Deflection Rate mm/min | 5
2 | 12
3 | 22
3 | 34
4 | 46
4 | 57
4 | 68
3 | 79
3 | 89
3 | 98
3 | 112
2 | 126
2 | 138
3 | 150
2 | 155
2 | 171
2 | 187
4 | 202
2 | | TEST CENTRE: WARRINGTON RESEARCH TEST DATE: 31st OCTOBER 1991 TEST NUMBER: WFRC 54278 DATA SHEET NUMBER 104C | THERMOCOUPLE | | | | | TEM | IPER. | ATUR | E De | g. C | AFTE! | R VA | RIOU | S TIM | IES (1 | UNIN | TES) | | | | |--------------|----|----|----|----|-----|---------|-----------|------|------|-------|------|------|-------|--------|------|------|-----|-----|-----| | LOCATION | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 35 | 40 | 45 | 52 | 55 | 60 | 65 | 69 | 72 | | Concrete | CCA1 | 19 | 22 | 34 | 52 | 73 | 94 | 102 | 111 | 129 | 155 | 203 | 252 | 306 | 368 | 390 | 425 | 457 | 482 | 501 | | CCB1 | 19 | 22 | 32 | 47 | 65 | 85 | 100 | 105 | 120 | 143 | 189 | 240 | 293 | 358 | 382 | 416 | 447 | 471 | 488 | | CCA2
CCB2 | • | : | • | : | * | * | • | * | * | : | * | : | • | : | • | : | * | | : | | CCA3 | 21 | 37 | 58 | 82 | 102 | 116 | 145 | 173 | 205 | 239 | 295 | 350 | 401 | 463 | 487 | 524 | 559 | 586 | 606 | | CCB3 | 19 | 23 | 35 | 54 | 76 | 97 | 101 | 108 | 126 | 148 | 190 | 236 | 281 | 338 | 359 | 392 | 422 | 445 | 463 | | CCA4 | 19 | 19 | 21 | 29 | 41 | 56 | 75 | 99 | 101 | 102 | 103 | 123 | 161 | 214 | 232 | 263 | 293 | 317 | 336 | | CCB4 | 19 | 19 | 20 | 25 | 34 | 47 | 65 | 85 | 97 | 101 | 102 | 117 | 147 | 192 | 210 | 241 | 270 | 292 | 309 | | CCA5 | 19 | 19 | 22 | 30 | 41 | 55 | 74 | 93 | 101 | 102 | 103 | 119 | 156 | 208 | 227 | 258 | 288 | 312 | 330 | | CCB5 | 18 | 18 | 19 | 24 | 34 | 46 | 63 | 84 | 94 | 100 | 101 | 111 | 136 | 176 | 192 | 219 | 247 | 268 | 284 | | CCA6 | 19 | 24 | 34 | 43 | 56 | 75 | 93 | 101 | 101 | 106 | 132 | 171 | 211 | 265 | 287 | 322 | 357 | 384 | 404 | | CCB6 | 18 | 18 | 20 | 30 | 44 | 60 | 77 | 89 | 94 | 97 | 101 | 110 | 129 | 169 | 185 | 211 | 237 | 258 | 273 | | CCA7
CCB7 | 18 | 18 | 18 | 20 | 25 | *
32 | 46 | 72 | 87 | 93 | 99 | 102 | 113 | 137 | 146 | 167 | 191 | 211 | 226 | | CCA8 | 19 | 19 | 20 | 25 | 33 | 43 | 57 | 77 | 99 | 101 | 102 | 102 | 119 | 159 | 174 | 200 | 227 | 251 | 270 | | CCB8 | 18 | 18 | 18 | 20 | 25 | 33 | 53 | 86 | 94 | 97 | 100 | 101 | 106 | 134 | 146 | 164 | 186 | 203 | 217 | | CCA9
CCB9 | 19 | 22 | 30 | 38 | 46 | 55 | 72
• | 91 | 97 | 99 | 104 | 126 | 153 | 199 | 219 | 252 | 286 | 313 | 333 | DATA SHEET NUMBER 105A ### SLIM FLOOR BEAM ### **DIMENSIONS AND PROPERTIES** | Section | Dimensions | Depth | Width | Mass | Thic | kness | Elastic | Modulus | Plastic | Modulus | Moment | of Inertia | |-------------------------------|---------------------------|---------------------|---------------------|--------------------|------------|--------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------| | Serial Size
and Type
mm | and
Properties | of
Section
mm | of
Section
mm | Per
Metre
kg | Web
mm | Flange
mm | Axis
x-x
cm ³ | Axis
y-y
cm ³ | Axis
x-x
cm ³ | Axis
y-y
cm ³ | Axis
x-x
cm ⁴ | Axis
y-y
cm4 | | 254 x 254
Column | Nominal
Actual | 254.0
254 | 254.0
256 | 73
70.0 | 8.6
8.9 | 14.2
13.2 | 894.5
854.5 | 305.0
288.5 | 988.6
944.3 | 462.4
438.1 | 11360
10852 | 3873
3693 | | 460 x 15
Plate | Nominal
Actual | 15.0
15.1 | 460
458 | 54.2
54.3 | | | \$ | | | | | : | | UC & Plate
Combined | Nominal (a)
Actual (a) | | | 127.6
124.8 | | | 1006
964.7 | 702.4
694.0 | 1226
1182 | 1265
1238 | 18578
17946 | 16155
15892 | #### CHEMICAL COMPOSITION (PRODUCT ANALYSIS - Wt. %) | Product | Steel Quality | С | Si | Mn | P | S | Cr | Мо | Ni | v | Cu | Nb | Al | N | |------------|---------------|------|------|------|-------|-------|------|-------|------|--------|------|--------|-------|--------| | Column (b) | Fe 430 A | 0.20 | 0.26 | 0.58 | 0.027 | 0.021 | 0.05 | 0.005 | 0.04 | <0.005 | 0.06 | <0.005 | 0.050 | 0.0057 | | Plate (c) | Fe 430 A | 0.14 | 0.27 | 0.94 | 0.024 | 0.022 | 0.11 | 0.016 | 0.06 | <0.005 | 0.08 | <0.005 | 0.016 | 0.0046 | ### ROOM TEMPERATURE TENSILE PROPERTIES | Position | LYS | TS | Elong. | |----------|-------|-------|--------| | | N/mm² | N/mm² | % | | Column | 307 | 486 | 35.0 | | Plate | 317 | 472 | 35.5 | #### NOTES | (a) | Including | the 8 | mm fille | t weld. | |-----|-----------|-------|----------|---------| - (b) Manufactured by Unimetal, France. - (c) Manufactured by Huta Czestochowa, Poland. - (d) Initial ambient temperature = 15°C - (e) Based on an initial ambient temperature of 20°C. - (*) Data considered to be unreliable. TEST CENTRE: WARRINGTON RESEARCH TEST DATE: 4th NOVEMBER 1992 TEST NUMBER: WFRC 56867 BS476: PARTS 20 & 21: 1987 RESULTS TIME TO L/30 : 56 MINUTES TIME TO L/9000D : 62 MINUTES RE-LOAD TEST : NOT CARRIED OUT LOAD BEARING CAPACITY : 62 MINUTES FIRE RESISTANCE : 62 MINUTES DATA SHEET NUMBER 105B | | TEMPERATURE Deg. C AFTER VARIOUS TIMES (MINUTES) |--|--|---|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------|----------------------|--------------------------|--------------------------|--------------------------|----------------------| | THERMOCOUPLE
LOCATION | | 3 6 9 12 15 18 21 24 27 30 35 40 45 50 56 62 70 80 90 | | | | | | | | | | | | | | | 90 | | | | | Upper Flange | Mean A17, B17
D17
E17 | 23 23 23 | 23
24
23 | 24
24
23 | 24
24
23 | 24
24
23 | 24
24
23 | 24
26
23 | 24
31
23 | 27
36
23 | 34
41
25 | 46
50
35 | 64
58
43 | 70
66
53 | 73 | 77
88
92 | 86
100 | 96
101 | 99
102 | 90
109
109 | | UF/Web Junction | Mean A16, B16
Mean C16, D16
E16 | 24
23
23 | 24
24
23 | 25
24
23 | 25
24
23 | 25
24
23 | 25
27
23 | 25
31
23 | 34
36
23 | 46
43
30 | 57
49
40 | 73
57
54 | 84
63
70 | 86
70
85 | 89 |
93
93
90
98 | 98
97
100 | 100
102
100 | 101
102
109
101 | 10
12
10 | | Web, Between Duct and UF | D15 | 23 | 23 | 27 | 30 | 36 | 41 | 48 | 56 | 63 | 68 | 78 | 81 | 86 | 91 | 96 | 101 | 121 | 143 | 16 | | Web, Mid Height of Section | Mean A12, B12
E12 | 24
23 | 25
23 | 25
23 | 25
23 | 25
23 | 60
25 | 97
89 | 102
100 | 102
101 | 104
101 | 116
101 | 133
109 | 144
120 | 146
134 | 160
146 | 179
157 | 200
174 | 219
190 | 23
21 | | Web Between Centre Ducts | Mean W5, W8
Mean W6, W7
Mean W1, W4
Mean W2, W3 | 25
25
24
24 | 26
25
24
25 | 31
25
24
25 | 38
29
24
25 | 53
39
32
30 | 97
98
96
84 | 102
100
99
100 | 102
101
100
101 | 107
103
101
101 | 119
108
103
103 | 147
139
124
121 | 152
125
111
124 | 167
134
115
126 | 184
145
106 | 207
186 | 238
218
180
178 | 275
253
213
206 | 311
286
240
229 | 34
31
26
24 | | Web, 50 mm From LF | Mean A11, B11
E11 | 23
23 | 24
23 | 24
23 | 35
27 | 46
40 | 63
87 | 94
98 | 100
100 | 108
101 | 142
102 | 198
139 | 239
188 | 269
207 | 305
210 | | 369
304 | 408
340 | 444
387 | 47 | | Web, 30 mm From LF | Mean A10, B10
E10 | 24
23 | 25
23 | 29
24 | 53
36 | 67
58 | 74
94 | 98
99 | 112
100 | 149
111 | 195
141 | 255
203 | 308
259 | 374
291 | 407
309 | 447
355 | 395 | 436 | 496 | | | Web, 10 mm From LF | Mean A9, B9
Mean C9, D9
E9 | 24
23
23 | 25
27
23 | 40
44
32 | 73
67
51 | 90
103
84 | 93
128
98 | 104
165
103 | 137
208
104 | 197
256 | 247
303
182 | 320
382
258 | 384
462
326 | 440
531 | 479
587 | 534
646 | 581
692
511 | 733
556 | 796
629 | 88 | | LF/Web Junction | A8
Mean C8, D8
E8 | 23
23
23 | 23
26
23 | 38
44
34 | 68
68
54 | 98
102
90 | 99
132
101 | 115
172
103 | 176
216
106 | 237
264
140 | 286
313
192 | 358
393
268 | 424
473
341 | 480
544
392 | 601 | 660 | 623
707
531 | 748
576 | 814
650 | 8 | | Flange Between Centre Ducts | Mean F1, F4 | 23 | 29 | 49 | 86 | 112 | 144 | 186 | 235 | 285 | 331 | 401 | 468 | 526 | 578 | 634 | 685 | 733 | 785 | 8 | | LF B/6 From C/L | Mean A7, B7
Mean C7, D7
E7 | 24
23
23 | 27
31
27 | 45
53
47 | 85
80
72 | 102
114
102 | 105
152
118 | 116
195
117 | 165
241
137 | 221
292
189 | 270
342
242 | 348
425
314 | 419
509
395 | 482
578
455 | 634 | | 659
734
599 | 785
642 | 850
714 | 7 | | LF B/3 From C/L | Mean A6, B6
Mean C6, D6
E6 | 24
23
23 | 41
43
42 | 72
75
78 | 107
103
100 | 144
146
129 | 174
192
170 | 199
239
199 | 271
289
234 | 329
340
276 | 379
391
321 | 453
472
392 | 520
555
469 | 575
618
528 | | | 707
765
660 | 754
820
699 | 806
878
761 | 8
9
8 | | Plate, Mid Width | Mean A5, B5
Mean C5, D5
E5 | 68
72
70 | 135
140
124 | | 239
287
251 | 332
354
302 | 426
434
372 | 495
498
444 | 552
555
505 | | 636
638
594 | 682
685
646 | 715
717
676 | 741
746
700 | | | 807
838
767 | 843
884
815 | 893
919
834 | | | Plate, B/6 From C/L | Mean A4, B4
D4
E4 | 69
81
87 | 139
146
151 | 211
216
211 | 260
289
269 | 342
360
336 | 430
433
399 | 496
494
460 | 554
549
519 | 596 | 639
634
607 | 686
683
661 | 720
716
693 | 748
750
721 | 766
773
745 | 794
814
768 | 822
845
790 | 862
894
836 | 907
929
855 | | | Plate, B/3 From C/L | Mean A3, B3
Mean C3, D3
E3 | 66
80
64 | 125
138
108 | 190
202
159 | 255
274
220 | 327
347
290 | 404
416
354 | 468
477
416 | 526
535
475 | 584 | 617
625
569 | 669
679
627 | 708
719
664 | 740
754
699 | | 824 | 825
856
783 | 867
907
830 | 912
941
853 | 9 | | Plate Extension, x/3 From
Flange Tip | Mean A2, B2
Mean C2, D2
E2 | 66
66
47 | 122
117
90 | 180
173
136 | 244
237
190 | 315
306
249 | 385
375
310 | 445
440
371 | 504
502
429 | 559
561
484 | 606
610
533 | 670
678
602 | 719
732
658 | 757
774
706 | | 833
862
782 | 864
893
815 | 906
932
859 | 935
959
895 | | | Plate Extension, 2x/3 From
Flange Tip | Mean A1, B1
Mean C1, D1
E1 | 87
60 | | 159 | | 269 | | 479
388 | 543
450 | 507 | 650
558 | 716
629 | | 732 | 766 | 812 | | 887 | 921 | ç | | Services Duct | Mean Duct 1,
Duct 2 | 319 | 358 | 417 | 456 | 496 | 528 | 533 | 559 | 547 | 573 | 572 | 596 | 620 | 631 | 641 | 663 | 686 | | | | Furnace Gas (d)
Standard Curve (e) | | 480
502 | 565
603 | 623
663 | 665
705 | | 748
766 | 768
789 | 801
809 | 824
826 | 840
842 | 863
865 | 883
885 | | | | | | | | | Deflection
Deflection Rate | mm
mm/min | 3
2 | | 14
2 | 21
2 | 30
3 | | 48
3 | 56
3 | 64
3 | 70
2 | 80
2 | 88
2 | 97
2 | | 144
6 | | | | | DATA SHEET 105C TEST CENTRE: WARRINGTON RESEARCH TEST DATE: 4th NOVEMBER 1992 TEST NUMBER: WFRC 56867 SHEET NUMBER 105D | THERMOCOUPLE | TEMPERATURE Deg. C AFTER VARIOUS TIMES (MINUTES) |----------------------------------|--|----------|----------|----------|---------------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|------------|------------|------------|------------|------------| | LOCATION | . 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 35 | 40 | 45 | 50 | 56 | 62 | 70 | 80 | 90 | | Concrete at Mid-Span | C/C 1
C/C 2
C/C 3
C/C 4 | 23
23 | 23
23 | 24
24 | 24
24 | 24
24 | 24
24 | 24
24 | 24
26 | 26
32 | 32
37 | 40
46 | 48
55 | 56
63 | 64
71 | 71
79 | 77
85 | 83
92 | 91
100 | 97
102 | | C/C 4
C/C 5
C/C 6
C/C 7 | 23
25 | 23
25 | 24
25 | 24
25 | 24
25
* | 26
28 | 32
33 | 38
39 | 45
46 | 52
54 | 62
85 | 72
107 | 81
112 | 91
112 | 103
109 | 107
109 | 110
117 | 122
163 | 152
217 | DATA SHEET 106A NUMBER 106A # INDICATIVE SLIM FLOOR BEAM # DIMENSIONS AND PROPERTIES | Section | Dimensions Depth Width Mass | | Thickness | | Elastic | Modulus | Plastic | Modulus | Moment of Inertia | | | | |-------------------------------|-----------------------------|---------------------|---------------------|--------------------|------------|--------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------| | Serial Size
and Type
mm | and
Properties | of
Section
mm | of
Section
mm | Per
Metre
kg | Web
mm | Flange
mm | Axis
x-x
cm ³ | Axis
y-y
cm ³ | Axis
x-x
cm ³ | Axis
y-y
cm ³ | Axis
x-x
cm ⁴ | Axis
y-y
cm4 | | 152 x 152
Column | Nominal
Actual | 157.5
158 | 152.9
152 | 30
29.7 | 6.6
6.6 | 9.4
9.25 | 221.2
219.0 | 73.06
71.30 | 247.1
244.6 | 111.2
108.6 | 1742
1730 | 558.0
541.9 | | 355 x 15
Plate | Nominal
Actual | 15.0
15.2 | 355
360 | 41.8
43.0 | | | | | | | | | | UC & Plate
Combined | Nominal (a)
Actual (a) | | | 72.4
73.1 | | | 265.2
262.4 | 348.9
360.6 | 341.0
338.7 | 589.3
606.1 | 3422
3422 | 6193
6491 | # CHEMICAL COMPOSITION (PRODUCT ANALYSIS - Wt. %) | Product | Steel Quality | С | Si | Mn | P | s | Cr | Mo | Ni | v | Cu | NЪ | Al | N | |-----------------|----------------------|--------------|--------------|--------------|----------------|----------------|----|------------------|--------------|------------------|--------------|----------------|----|------------------| | Column
Plate | Fe 510 B
Fe 510 B | 0.17
0.13 | 0.02
0.36 | 1.43
1.39 | 0.015
0.016 | 0.015
0.007 | | <0.005
<0.005 | 0.02
0.02 | <0.005
<0.005 | 0.01
0.01 | 0.032
0.031 | | 0.0025
0.0050 | ### ROOM TEMPERATURE TENSILE PROPERTIES | Position | LYS | TS | Elong. | |----------|-------|-------|--------| | | N/mm² | N/mm² | % | | Column | 420 | 561 | 29.5 | | Plate | 402 | 545 | 32.5 | # NOTES | _ | | | | | |-----|-----------|---------|-----------|-------| | (a) | Including | the 8 r | nm fillet | weld. | - (b) Initial ambient temperature = 21°C. - (c) Based on an initial ambient temperature of 20°C. - (*) Data considered to be unreliable. ### TEST CONDITIONS TEST CENTRE: WARRINGTON RESEARCH TEST DATE: 31st JULY 1991 TEST NUMBER: WFRC 51884 INDICATIVE SLIM FLOOR BEAM FURNACE TYPE : FLOOR FURNACE POSITION IN FURNACE : FULL LENGTH MEMBER DATA SHEET NUMBER 106B | THERMOCOUPLE | | | | **. | TE | MPER | ATUF | ≀E De | g. C A | FTEI | R VAF | RIOUS | TIM | ES (M | INUT | ES) | | | | |---|--|--|--|--|--|--|--|--|--|--|--
--|--|--|--|--|--|--|--| | LOCATION | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 70 | 80 | 88 | | Upper Flange | 25 | 27 | 32 | 36 | 41 | 48 | 57 | 60 | 64 | 70 | 89 | 108 | 125 | 140 | 153 | 165 | 194 | 247 | 407 | | UF/Web Junction | 25 | 29 | 37 | 42 | 49 | 57 | 69 | 71 | 74 | 82 | 104 | 127 | 147 | 163 | 176 | 189 | 217 | 261 | 370 | | Web | Mid-Height of Exposed Portion
10 mm above concrete
10 mm below concrete
50 mm from LF
30 mm from LF
10 mm from LF | 27
26
27
27
27
27
29 | 32
28
28
29
34
46 | 40
36
38
41
50
74 | 47
46
52
57
71
108 | 58
59
68
76
96
148 | 73
76
88
100
118
189 | 90
96
112
126
150
234 | 94
113
133
151
182
281 | 100
125
149
172
209
319 | 116
140
167
193
239
363 | 148
170
199
232
290
426 | 176
196
229
267
335
477 | 198
217
254
297
373
521 | 216
237
277
323
408
556 | 232
254
299
346
437
584 | 248
271
318
366
463
609 | 278
304
357
404
510
653 | 318
345
398
438
551
694 | 395
407
448
470
591
734 | | LF/Web Junction | 45 | 74 | 119 | 167 | 218 | 267 | 323 | 370 | 412 | 465 | 527 | 580 | 627 | 663 | 688 | 708 | 755 | 802 | 84 | | Lower Flange | B/6 from C/L
B/4 from C/L
B/3 from C/L | 52
46
49 | 85
79
81 | 135
130
130 | 187
185
182 | 241
242
236 | 292
296
286 | 351
356
344 | 398
405
392 | 442
447
436 | 497
500
491 | 560
561
557 | 612
612
612 | 660
656
659 | 696
686
695 | 721
710
720 | 742
731
744 | 792
780
796 | 844
828
849 | 88
86
88 | | Plate | | | | | | | | | | | | | - | | | | | | | | Mid-Width
B/6 from C/L
B/4 from C/L
B/4 from C/L (1500 mm)
B/4 overall
B/3 from C/L | 62
78
64
57
60
61 | 99
119
105
92
99
98 | 153
177
165
144
154
153 | 207
231
226
196
211
208 | 260
284
285
251
268
264 | 312
333
341
303
322
316 | 374
393
409
363
390
378 | 416
435
453
408
435
423 | 461
479
498
451
479
469 | 514
534
552
502
532
524 | 574
592
606
561
588
586 | 624
641
655
607
636
639 | 671
688
698
652
680
686 | 707
723
727
688
712
721 | 732
747
747
717
735
747 | 751
767
764
737
753
772 | 801
815
809
776
796
824 | 851
863
855
823
842
875 | 89
90
89
86
86
91 | | Plate Extension | x/3 from FL. Tip
x/2 from FL. Tip
x/2 from FL. Tip (930 mm)
x/2 from FL. Tip (1500 mm)
x/2 overall
2x/3 from FL. Tip | 60
67
67
82
71
70 | 103
116
117
128
119
120 | 167
184
183
190
185
190 | 226
250
246
251
249
254 | 287
315
309
313
312
319 | 344
374
368
370
371
379 | 413
444
437
434
439
451 | 464
493
487
476
486
499 | 509
534
528
516
527
541 | 567
593
585
572
584
603 | 632
653
648
631
645
668 | 684
699
696
682
693
715 | 723
732
730
720
728
748 | 751
757
758
746
754
780 | 781
785
785
771
781
811 | 810
812
811
797
807
839 | 861
858
858
843
853
887 | 905
900
900
887
896
925 | 90
90
90
90
90
90 | | Fillet Weld | 41 | 71 | 116 | 165 | 217 | 266 | 323 | 375 | 417 | 472 | 539 | 593 | 638 | 781 | 696 | 721 | 770 | 819 | 8 | | Cavity | 25 | 36 | 45 | 55 | 65 | 86 | 101 | 57 | 58 | 98 | 133 | 146 | + | + | • | + | + | • | | | Furnace Gas (b)
Standard Curve (c) | 497
502 | 589
603 | 668
663 | 710
705 | 729
739 | 762
766 | 905
789 | 755
809 | 821
826 | 852
842 | 863
865 | 886
885 | 901
902 | 918
918 | 930
932 | 943
945 | 970
968 | 992
988 | 10
10 | TEST CENTRE: WARRINGTON RESEARCH TEST DATE: 31st JULY 1992 TEST NUMBER: WFRC 51884 DATA SHEET NUMBER 106C | THERMOCOUPLE | | | | | TEN | IPER. | ATUR | E De | g. C / | FTE | R VA | RIOU | S TIM | ies (1 | UNIN | TES) | | | | |--------------|----|----|---------|----|-----|-------|------------|---------|---------|------------|------|------|-------|--------|----------|------|-----|----------|------------| | LOCATION | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 70 | 80 | 88 | | Concrete | | | | | | | | | | | | | | | | | | - | | | CCA1 | 26 | 26 | 29 | 39 | 56 | 87 | 97 | 96 | 97 | 101 | 114 | 148 | 182 | 217 | 252 | 285 | 349 | 409 | 463 | | CCB1 | 26 | 32 | 48 | 70 | 96 | 104 | 126 | 158 | 193 | 235 | 305 | 363 | 411 | 455 | 491 | 520 | 569 | 618 | 658 | | CCA2 | 26 | 33 | 51 | 75 | 87 | 98 | 122 | 135 | 164 | 208 | 268 | 322 | 373 | 421 | 463 | 498 | 565 | 632 | 692 | | CCB2 | 26 | 30 | 45 | 66 | 90 | 99 | 106 | 133 | 165 | 196 | 258 | 301 | 348 | 395 | 436 | 469 | 524 | 582 | 629 | | CCA3 | 26 | 33 | 52 | 75 | 94 | 101 | 130 | 163 | 186 | 215 | 273 | 329 | 382 | 430 | 472 | 509 | 576 | 638 | 690 | | CCB3 | 26 | 28 | 40 | 60 | 81 | 96 | 100 | 120 | 141 | 164 | 211 | 254 | 309 | 357 | 394 | 425 | 480 | 535 | 582 | | CCA4 | 26 | 26 | 33 | 51 | 81 | 99 | 100 | 97 | 99 | 111 | 158 | 211 | 263 | 310 | 350 | 384 | 448 | 510 | 571 | | CCB4 | 26 | 26 | 29 | 40 | 65 | 95 | 96 | 92 | 100 | 114 | 153 | 203 | 247 | 295 | 335 | 367 | 422 | 478 | 539 | | CCA5 | 26 | 26 | 33 | 50 | 70 | 87 | 96 | 91 | 94 | 102 | 125 | 169 | 220 | 270 | 311 | 347 | 413 | 483 | 552 | | CCB5 | 26 | 26 | 27 | 37 | 54 | 74 | 88 | 97 | 99 | 100 | 109 | 126 | 159 | 210 | 256 | 289 | 345 | 401 | 452 | | CCA6 | 26 | 26 | 36 | 49 | 64 | 86 | 99 | 101 | 103 | 107 | 147 | 185 | 230 | 277 | 319 | 356 | 421 | 484 | 536 | | CCB6 | 26 | 26 | 29 | 40 | 55 | 70 | 83 | 93 | 97 | 101 | 106 | 124 | 177 | 219 | 255 | 284 | 336 | 387 | 431 | | CCA7 | 26 | 33 | 50 | 79 | 96 | 105 | 117 | 183 | 223 | 263 | 334 | 395 | 449 | 497 | 534 | 567 | 627 | 690 | 744 | | CCB7 | 26 | 26 | 26 | 29 | 37 | 82 | 93 | 82 | 86 | 99 | 100 | 105 | 132 | 168 | 201 | 232 | 292 | 348 | 410 | | CCA8
CCB8 | 26 | 26 | *
26 | 26 | 33 | 48 | 6 5 | *
76 | *
77 | 9 9 | 100 | 100 | 100 | 107 | *
140 | 166 | 218 | *
277 | 328 | | CCA9 | 26 | 26 | 31 | 40 | 52 | 66 | 86 | 97 | 97 | 100 | 100 | 137 | 164 | 203 | 243 | 278 | 340 | 402 | 456 | | CCB9 | 26 | 26 | 26 | 28 | 36 | 50 | 67 | 69 | 69 | 79 | 96 | 97 | 100 | 112 | 135 | 157 | 207 | 261 | 310 | # APPENDIX 2 LOAD CALCULATION SUMMARY SHEETS #### A2.1 TEST WFRC 50521: NON-COMPOSITE SLIM FLOOR BEAM #### A2.1.1 Geometry Figures 1, 2 and 5 give relevant details. #### A2.1.2 **Material Properties** #### (a) Steel The steel grade for both beam and plate was specified as Fe 430 A. See data sheet 99A in Appendix 1 for measured properties. #### Concrete **(b)** The maximum moisture content of the concrete, measured on the day of the test, was found to be 4.7%. The characteristic strength of the concrete was accepted as being 60 N/mm² and the density as 1200 kg/m³. (50% of normal weight concrete, viz 2400 kg/m³). #### A2.1.3 **Load Calculations** #### **Locate PNA A2.1.3.1** The balance of yield strengths and areas reveals that the PNA is located in the lower flange of the UC section at a distance of 0.912 mm from the upper face. #### A2.1.3.2 Assess M_p Calculations involving the force, (material strength x element areas), multiplied by the lever arm about the PNA reveal that the plastic moment of resistance of the section is 510.7 kN m. #### A2.1.3.3 **Assess Applied Moment** | (a) | UC Section and Plate dead load moment Mds | $=4.075\mathrm{kN}\;\mathrm{m}$ | |-----|--|---------------------------------| | (b) | Concrete Slab dead load moment M _{dc} | = 9.11 kN m | | (c) | Sand fill dead load moment | = Negligible by Inspection | | (d) | Imposed live load moment | | | | 437 141 1 | A | 4 No. point loads arranged symmetrically about centre span = 267.3 kN m**Total Applied Moment** = 280.5 kN m #### A2.1.3.4 **Assess Local Buckling Classification** (a) Flange outstand: $$b/T = 258.3/(20.5 \times 2)$$ = 6.3 6.3 < 9.2, ... Class 1 (b) Web (subject to compression throughout) $$d/t_w = 200.2/13.0$$ = 15.4 15.4 < 30.5, ... Class 1 Therefore the section is Class 1 for local buckling (c) # A2.1.3.5 Assess LTB Resistance Moment (BS5950: Pt. 1: 1990) This calculation was based upon the assumption that the loading positions do not offer any lateral restraint to the compression flange of the beam: $M_b = 408 \text{ kN m}$ # A2.1.3.6 Load Ratios (a) Assuming load points as positions of lateral restraint: R = 0.55 (b) Assuming load points do not provide positions of lateral restraint: R = 0.69 # A2.2 TEST WFRC 50522 : COMPOSITE SLIM FLOOR BEAM # A2.2.1 Geometry Figures 6, 7 and 9 give relevant details. # A2.2.2 Material Properties ### (a) Steel The steel grade for both beam and plate was specified as Fe 430 A. See data sheet 100A in Appendix 1 for measured properties. # (b) Concrete The maximum moisture content of the concrete, measured on the day of the test, was found to be 4.1%. The characteristic strength of the concrete was accepted as being 35 N/mm^2 and its density as 2400 kg/m^3 . ### A2.2.3 Load
Calculations ### A2.2.3.1 Locate PNA The balance of yield strengths and areas reveals that the PNA is located at a distance of 255.8 mm from the top of the concrete slab. # A2.2.3.2 Assess M_p Calculations involving the force, (material strength x element areas), multiplied by the lever arm about the PNA reveal that the plastic moment of resistance of the section is 799 kN m. # A2.2.3.3 Assess Applied Moment | (a) | UC Section and Plate dead load moment M _{ds} | = 3.44 KN III | |-----|---|------------------------------------| | (b) | Concrete Slab dead load moment Mdc | $= 36.45 \mathrm{kN} \;\mathrm{m}$ | | (c) | Sand fill dead load moment | = Not applicable | | | | | (d) Imposed live load moment 8 No. point loads arranged symmetrically about centre span M_{max} = 426.9 kN m Total Applied Moment = 466.79 kN m - 2 44 I-NI --- ### A2.2.3.4 Load Ratio Assuming load points as positions of lateral restraint: R = 0.58 # A2.3 TEST WFRC 52896: NON-COMPOSITE SLIM FLOOR BEAM # A2.3.1 Geometry Figures 10, 11 and 12 gives relevant details. # A2.3.2 Material Properties (a) Steel The steel grade for both beam and plate was specified as Fe 430 A. See data sheet 101A in Appendix 1 for measured properties. # (b) Concrete The maximum moisture contents of the sand and precast concrete blocks, measured on the day of the test, were found to be 1.5% and 1.9% respectively. The measured density of the precast concrete blocks was $1870 \, \text{kg/m}^3$. ### A2.3.3 Load Calculations ### A2.3.3.1 Locate PNA The balance of yield strengths and areas reveals that the PNA is located in the lower flange of the UC section at a distance of 10.7 mm from the upper face. # A2.3.3.2 Assess M_D Calculations involving the force, (material strength x element areas), multiplied by the lever arm about the PNA reveal that the plastic moment of resistance of the section is 245.13 kN m. # A2.3.3.3 Assess Applied Moment | (a) | UC Section and Plate dead load moment M _{ds} | $= 2.7 \mathrm{kN} \mathrm{m}$ | |-----|---|--------------------------------| | (b) | Concrete Slab dead load moment M _{dc} | = 4.05 kN m | (c) Sand fill dead load moment = included in concrete dead load (d) Imposed live load moment 6 No. point loads arranged symmetrically about centre span M_{max} = 119.9 kN m Total Applied Moment = 126.65 kN m # A2.3.3.4 Assess Local Buckling Classification (a) Flange outstand: $$(b/2)/T = 102.5/14$$ = 7.32 7.32 < 9.2. : Class 1 (b) Web (subject to compression throughout) $$d/t_w = 160.8/9.3$$ 17.3 < 30.5, .. Class 1 (c) Therefore the section is Class 1 for local buckling. # A2.3.3.5 Assess LTB Resistance Moment (BS5950: Pt. 1: 1990) This calculation was based upon the assumption that the loading positions do not offer any lateral restraint to the compression flange of the beam: $M_b = 137.6 \, kN \, m$ ### A2.3.3.6 Load Ratios (a) Assuming load points as positions of lateral restraint: R = 0.516 (b) Assuming load points do not provide positions of lateral restraint: R = 0.920 # A2.4 TEST WFRC 52897: NON-COMPOSITE SLIM FLOOR BEAM # A2.4.1 Geometry Figures 13 and 14 give relevant details. # A2.4.2 Material Properties ### (a) Steel The steel grade for both beam and plate was specified as Fe 430 A. See data sheet 102A in Appendix 1 for measured properties. # (b) Concrete The maximum moisture contents of the in situ concrete and precast concrete blocks, measured on the day of the test, were found to be 4.1% and 1.9% respectively. The characteristic strength of the in situ concrete was accepted as being 30 N/mm² and its density as 2400 kg/m³. The measured density of the precast concrete blocks was 1870 kg/m³. # A2.4.3 Load Calculations # A2.4.3.1 Locate PNA The balance of yield strengths and areas reveals that the PNA is located in the lower flange of the UC section at a distance of 7.72 mm from the upper face. # A2.4.3.2 Assess M_p Calculations involving the force, (material strength x element areas), multiplied by the lever arm about the PNA reveal that the plastic moment of resistance of the section is 398 kN m. # A2.4.3.3 Assess Applied Moment | (a) | UC Section and Plate dead load moment M _{ds} | = 3.189 kN m | |-----|---|---------------------------------| | (b) | Concrete Slab dead load moment Mdc | $= 6.78 \mathrm{kN} \mathrm{m}$ | | (c) | Sand fill dead load moment | = Not applicable | (d) Imposed live load moment 6 No. point loads arranged symmetrically about centre span M_{max} = 172.23 kN m Total Applied Moment = 182.2 kN m # A2.4.3.4 Assess Local Buckling Classification (a) Flange outstand: $$(b/2)/T = 127/14.2 = 8.9$$ 8.9 < 9.2, ... Class 1 (b) Web (subject to compression throughout) $$d/t_w = 200.2/8.6$$ = 23.2 23.2 < 30.5, ... Class 1 (c) Therefore the section is Class 1 for local buckling # A2.4.3.5 Assess LTB Resistance Moment (BS5950: Pt. 1: 1990) This calculation was based upon the assumption that the loading positions do not offer any lateral restraint to the compression flange of the beam: $$M_b = 220 \text{ kN m}$$ # A2.4.3.6 Load Ratios (a) Assuming load points as positions of lateral restraint: R = 0.457 (b) Assuming load points do not provide positions of lateral restraint: R = 0.828 # A2.5 TEST WFRC 51883: NON-COMPOSITE SLIM FLOOR BEAM # A2.5.1 Geometry Figures 15 and 20 give relevant details. # A2.5.2 Material Properties # (a) Steel The steel grade for both beam and plate was specified as Fe 430 A. See data sheet 103A in Appendix 1 for measured properties. # (b) Concrete The maximum moisture contents of the in situ concrete and precast concrete blocks, measured on the day of the test, were found to be 4.0% and 3.2% respectively. The characteristic strength of the in situ concrete was accepted as being 30 N/mm² and its density as 2400 kg/m³. The measured density of the precast concrete blocks was $1920 \, \text{kg/m}^3$. ### A2.5.3 Load Calculations # A2.5.3.1 Locate PNA The balance of yield strengths and areas reveals that the PNA is located in the lower flange of the UC section at a distance of 0.975 mm from the upper face. # A2.5.3.2 Assess M_p Calculations involving the force, (material strength x element areas), multiplied by the lever arm about the PNA reveal that the plastic moment of resistance of the section is 1722.7 kN m. # A2.5.3.3 Assess Applied Moment (a) UC Section and Plate dead load moment M_{ds} = 8.88 kN m (b) Concrete Slab dead load moment M_{dc} = 5.82 kN m (c) Sand fill dead load moment = Not applicable (d) Imposed live load moment 6 No. point loads arranged symmetrically about centre span M_{max} = 308.9 kN m Total Applied Moment = 323.6 kN m # A2.5.3.4 Assess Local Buckling Classification (a) Flange outstand: (b/2)/T = 160/43.7 = 3.66 3.66 < 9.2, : Class 1 (b) Web (subject to compression throughout) $d/t_w = 246.6/27.3 = 9.03$ $9.03 < 30.5, \therefore Class 1$ (c) Therefore the section is Class 1 for local buckling ### A2.5.3.5 Assess LTB Resistance Moment (BS5950: Pt. 1: 1990) This calculation was based upon the assumption that the loading positions do not offer any lateral restraint to the compression flange of the beam: $M_b = 1686.1 \text{ kN m}$ #### A2.5.3.6 Load Ratios (a) Assuming load points as positions of lateral restraint: R = 0.188 (b) Assuming load points do not provide positions of lateral restraint: R = 0.192 # A2.6 TEST WFRC 54278: NON-COMPOSITE SLIM FLOOR BEAM # A2.6.1 Geometry Figures 21, 23 and 24 give relevant details. # A2.6.2 Material Properties (a) Steel The steel grade for both beam and plate was specified as Fe 510 B. See data sheet 104A in Appendix 1 for measured properties. #### **(b)** Concrete The maximum moisture contents of the in situ concrete and precast concrete blocks, measured on the day of the test, were found to be 3.9% and 2.5% respectively. The characteristic strength of the in situ concrete was accepted as being 30 N/mm² and its density as 2400 kg/m³. The measured density of the precast concrete blocks was 1890 kg/m3. #### A2.6.3 Load Calculations #### A2.6.3.1 Locate PNA The balance of yield strengths and areas reveals that the PNA is located in the lower flange plate at a distance of 1.83 mm from the upper face. #### A2.6.3.2 Assess Mn Calculations involving the force, (material strength x element areas), multiplied by the lever arm about the PNA reveal that the plastic moment of resistance of the section is 150.3 kN m. #### **Assess Applied Moment** A2.6.3.3 | (a) | UC Section and Plate dead load moment M _{ds} | $= 1.8 \mathrm{kN} \mathrm{m}$ | |-----|---|---------------------------------| | (b) | Concrete Slab dead load moment M _{dc} | $= 3.72 \mathrm{kN} \mathrm{m}$ | | (c) | Sand fill dead load moment | = Not applicable | | (d) | Imposed live load moment | | 6 No. point loads arranged symmetrically about centre span = 59.78 kN mTotal Applied Moment = 65.3 kN m #### A2.6.3.4 **Assess Local Buckling Classification** Flange outstand: (a) $$(b/2)/T = 76/9.1$$ = 8.35 8.35 < 9.2, ... Class 1 (b) Web (subject to compression throughout) $$d/t_w = 123.4/6.6$$ = 18.69 18.69 < 30.5, ... Class 1 (c) Therefore the section is Class 1 for local buckling #### A2.6.3.5 Assess LTB Resistance Moment (BS5950: Pt. 1: 1990) This calculation was based upon the assumption that the loading positions do not offer any lateral restraint to the compression flange of the beam: M_h $= 80.1 \, kN \, m$ #### **Load Ratios** A2.6.3.6 Assuming load points as positions of lateral restraint: (a) = 0.434 Assuming load points do not provide positions of lateral restraint: (b) = 0.815R # A2.7 TEST WFRC 56867: NON-COMPOSITE DEEP METAL DECK SLIM FLOOR BEAM # A2.7.1 Geometry Figures 26, 27, 28 and 34 give relevant details. # A2.7.2 Material Properties ### (a) Steel The steel grade for both beam and plate was specified as Fe 430 A. See data sheet 105A
in Appendix 1 for measured properties. # (b) Concrete The maximum moisture content of the concrete, measured on the day of the test, was found to be 4.3%. The characteristic strength of the concrete was accepted as being 30 N/mm² and its density as 2400 kg/m³. # A2.7.3 Load Calculations # A2.7.3.1 Locate PNA The balance of yield strengths and areas reveals that the PNA is located in the lower flange of the UC section at a distance of 9 mm from the upper face. # A2.7.3.2 Assess M_D Calculations involving the force, (material strength x element areas), multiplied by the lever arm about the PNA reveal that the plastic moment of resistance of the section is 358.3 kN m. # A2.7.3.3 Assess Applied Moment | (a) | UC Section and Plate dea | d load moment M _{ds} | = 3.146 kN m | |-----|---------------------------|-------------------------------|-----------------------------------| | (b) | Concrete Slab dead load i | noment M _{dc} | = 12.65 kN m | | (c) | Sand fill dead load mome | nt | = Not applicable | | (d) | Imposed live load momen | t | | | | 4 No. point loads arrange | d symmetrically about centre | span | | | | M _{max} | $= 168.76 \mathrm{kN} \mathrm{m}$ | | | | Total Applied Moment | = 184.55 kN m | # A2.7.3.4 Assess Local Buckling Classification (a) Flange outstand: $$(b/2)/T = 128/13.2 = 9.6$$ 9.6 < 10.2, .: Class 2 (b) Web (subject to compression throughout) $$d/t_w = 200.2/8.9$$ = 22.5 22.5 < 30.5, : Class 1 (c) Therefore the section is Class 1 for local buckling # A2.7.3.5 Assess LTB Resistance Moment (BS5950: Pt. 1: 1990) This calculation was based upon the assumption that the loading positions do not offer any lateral restraint to the compression flange of the beam: $M_b = 202 \text{ kN m}$ # A2.7.3.6 Load Ratios (a) Assuming load points as positions of lateral restraint: R = 0.52 (b) Assuming load points do not provide positions of lateral restraint: R = 0.913 ### **APPENDIX 3** ### PC DISK VERSION OF DATA As mentioned in the Introduction to this report the data recorded during each of the eight fire tests are available on PC disks. The following section gives a brief outline of the material available and its format. The reader may find it useful to additionally consult reference 1. The data are held on the disks in the form of ASCII text files. This format has been chosen since the majority of commercial software packages can import files of this type. The format allows the data to be referenced either via the screen, (or printer), or read directly by PC based software. The data are initially being made available on 3½ inch DSDD, 720 KB, floppy disks, but other disk sizes and formats can be supplied on request. The data files have been designated 'read only' in order to safeguard the user from accidentally corrupting or erasing them. The data files are identified by reference to the DATA SHEET NUMBER sequence, i.e. from 099.DAT to 106.DAT inclusive. This numbering system is consistent with that introduced in reference 1. Thus, for example, data from test number WFRC 50521 can be found in data file 099.DAT. For each individual fire test the thermal data have been sub-divided into 'SETS' which reflect the thermocouple positions in the steelwork, and other materials. Mean temperature values are also included in these data sub-sets where it is considered valid to do so. In order that the columns of data in any particular 'SET' can be related to the corresponding thermocouple positions a 'README' file is associated with each data file. By way of example, README.099, which relates to data in file 099.DAT, is shown in Fig. A3.1. It may be seen by reference to the data presented in Appendix 1 that there have been occasions when no temperature data were recorded. Such occurrences are indicated in the printed tables by the use of an asterisk. Since the use of such a character could cause problems if the software is expecting a numeric input, it has been replaced with the value zero in the disk held data files. It is obviously important for the user to ensure that any data have been read correctly by the particular software or program being used. ### REFERENCE 1. D. E. Wainman: 'Compendia of UK Standard Fire Test Data - Unprotected Structural Steel Nos. 1 and 2, PC Disk Version', British Steel Technical, Report SL/HED/R/S2298/1/92/C. # TABLE A3.1 README FILE ASSOCIATED WITH DATA FILE 099.DAT Data file 099.DAT contains data recorded during the standard fire resistance test number WFRC 50521 which is described in report number SL/HED/R/S2298/2/93/C "SUMMARY OF DATA OBTAINED DURING TESTS ON FLANGE PLATED SLIM FLOOR BEAMS" and should be used in conjunction with that document. There are 60 items of data which, together with their mean values, are grouped in sets as shown below. | set number | ITEMS IN COLUMNS | |------------|---| | SET001.DAT | TIME, F3, A17, B17, MEAN. | | SET002.DAT | TIME, A16, B16, MEAN. | | SET003.DAT | TIME, A15, B15, MEAN. | | SET004.DAT | TIME, A14, B14, MEAN. | | SET005.DAT | TIME, A13, B13, MEAN. | | SET006.DAT | TIME, W1, W2, W3, W4, A12, B12, MEAN. | | SET007.DAT | TIME, A11, B11, MEAN. | | SET008.DAT | TIME, AlO, BlO, MEAN. | | SET009.DAT | TIME, A9, B9, MEAN. | | SET010.DAT | TIME, A8, B8, MEAN. | | SET011.DAT | TIME, A7, B7, MEAN. | | SET012.DAT | TIME, F1, F6, F7, MEAN. | | SET013.DAT | TIME, A6, B6, MEAN. | | SET014.DAT | TIME, A5, B5, MEAN. | | SET015.DAT | TIME, A4, B4, MEAN. | | SET016.DAT | TIME, P2, P4, P6, MEAN. | | SET017.DAT | TIME, A3, B3, MEAN. | | SET018.DAT | TIME, A2, B2, MEAN. | | SET019.DAT | TIME, P1, P3, P5, MEAN. | | SET020.DAT | TIME, Al, Bl, MEAN. | | SET021.DAT | TIME, FW1. | | SET022.DAT | TIME, ISO, AT1, AT2, AT3, AT4, AT5, AT6, AT7, AT8, MEAN | | SET023.DAT | TIME, DEFLECTION, DEFLECTION RATE. |